CORS 221 Module 3: Physics of Planetary Climate – Fall 2010

1. PROFESSOR

Jason W. Barnes

Office: Engineering-Physics Building Room 331

Email: jwbarnes@uidaho.edu - Phone: (208) 885-7469

Office hours: Monday, Wednesday, Friday 12:20PM-1:20PM or by appointment

2. CLASS WEBSITE: http://barnesos.net/cors221/

3. COURSE SCHEDULE

Classroom: TLC 223

Tuesday, Thursday 9:30AM - 10:50AM

FINAL EXAM: 7:30AM-9:30AM Monday, December 13 (out of the way early!)

4. TEXTBOOKS

Taylor, Elementary Climate Physics – optional

5. CLASSWORK AND GRADING

Remember that your grade for this third of the course will be averaged with your grade from the thirds taught by Dr. Kline and Dr. Sammaruca. Grades for the course will be individually curved -i.e. curved separately for each assignment for the climate portion of the course. The curves will be set by those that turn in each assignment - hence not handing in work will not lower the curve, and will likely be quite detrimental to your final grade. Make sure to get your work done.

5.1. Homework (40%)

There will be 4 weekly class homeworks, due on Tuesdays in the lecture hall at the beginning of class. Homeworks will be accepted up to 1 week late for 50% credit. Homeworks turned in more than one week after the due date will receive only 10% total credit just to indicate that you tried. Homework 1 will be due on 2010 November 9. Homework 2 will be due on 2010 November 16. Homework 3 will be due on 2010 November 30. And Homework 4 will be due 2010 December 7.

5.2. Essay (20%)

A moderate 1.5-4 page (single-spaced) paper will be due at the start of the final exam at 7:30AM on 2010 December 13. The assignment is to read a popular article in a newspaper or magazine about the science of global warming. A movie or TV documentary would also be acceptible (i.e. An Inconvenient Truth or similar), if it is about global warming. You are to discuss three different points that you think the article that you read addressed well. Describe these points, and why you think that they accurately portray the science involved. Next find at least two different points that you think were either done incorrectly or could have been done better. Discuss why you thought they did not adequately portray the relevant science, and what might be able to be done to improve them. If you think that your article was perfect, with no flaws, or was perfectly bad, with no positive points, then choose another article!

5.3. Exam (40%)

This module of the class has one exam that will be 45 minutes to an hour long. The exam will have a mixture of multiple-choice questions, short answer questions, and one longer essay-type question. It will focus on concepts, though there will be at least one problem that you will need your calculator for. The

exam will be open-note; you are allowed to use any notes that you took over the course of the class, including old homeworks. No computers or cell phones can be used. Printed powerpoints are NOT acceptible – the notes must be in your own handwriting.

Since University regulations prevent me from giving you the exam in the last week of classes, the exam will be given during the usual final exam for the course – 2009 December 13 at 7:30AM. I don't like the early hour any more than you do, but unfortunately I don't have any say in the matter, either!

Note that according to the University of Idaho the following are valid reasons for missing an exam: Patricipating in an approved field trip or other offical UI activity, confined under doctors orders, called to active military duty, granted leave of absence by the academic dean, and if an exam falls on a day objectionable to a student because of religious beliefs.

6. ACADEMIC INTEGRITY

Students are encouraged to work together on homework. However, each student must write up their solutions independently. Copying from someone else's answers is not appropriate, even if you both talked about the answers together. Talk about the problems and their solutions, but be sure to do and submit your own work. Note that I can tell if you just copy down somebody else's sentences; write up your own answer that shows that you understand the problem.

Cheating and/or violations of the University's code for academic dishonesty (see http://www.webs.uidaho.edu/fsh/2300.html) will be referred to the appropriate administrative authorities for disciplinary action.

7. DETAILED SCHEDULE

	Physics of Planetary Climate		
introductory material	syllabus	1	syllabus and pictures
		1	scientific method & empiricism
			what is climate
	nature of light		electromagnetic radiation
	blookbody radiation		wavelength / EM spectrum
	blackbody radiation		blackbody radiation Wien's law
			sigma*T^4
Teq	equilibrium temperature		radiative equilibrium
			Teq equation
			examples
	absorption lines		T+R+A=1
			absorptions in materials
	greenhouse		spectrum of atmosphere
			greenhouse effect leading greenhouse gases
seasons	temperature with latitude		poles are cold, equator is warm. why?
	tomperature war lautage		warm your hands by the fire
			solar incidence angle
		3	calculate Teq as func of solar incidence
	seasons		solar incidence changes with season
			length of day changes with season
	noot olimat-		show Teq for distance change
Long Climate history	past climate		geology: fossils and strata oxygen isotopes
			tree rings & historical records
	long-term climate		history of glacial events
			snowball earth
		4	heat transport & jungles at the poles
Medium-term Climate	ice age		Ice age for the last 2 Myr
			cycle of glacials and interglacials
Milantania	1. 1. 21 - 1 1 1 1 1 1		causes and nature of transitions
Milankovic cycles	orbital changes		eccentricity longitude of periapsis
			obliquity stabilized by Moon
Sun	faint young Sun paradox		fusion & hydrostatic equilibrium
	iam yearing can paradex		evolution of solar luminosity
	sunspots	6	what is a sunspot
			sunspot cycle
			sunspot effects on solar luminosity
	solar variability		historical
Earth climate forcers	clouds' effect		millenia-long maunder minimum cloud heating
	clouds effect		cloud neating
	ocean circulation		gulf stream
		7	antarctic current
	continental drift		continental configuration effects
Short-term climate	global warming		temperature over last 13000 years
	Danaikla		temp over last 200 years
	Possible causes		Sun natural forces
			greenhouse
	investigation of causes		tracking down the logic tree
Consequences	temperatures		temperature projections
			warming mostly affects LOW temps
			warming mostly affects high latitudes
			consequences of warming for agriculture
	nonlinear effects		gulf stream shutoff?
			changing rainfall patterns
	sea level rise		paleotempestology (stronger hurricanes?) distribution of ice on Earth
	Sea level 1156		floating vs. grounded ice
			sea level history and future
mitigation	possible remediations	10	do nothing
mitigation	possible remediations		do nothing scale back emissions
mitigation	possible remediations	10 10	scale back emissions carbon sequestration
mitigation		10 10 10	scale back emissions carbon sequestration geoengineering
mitigation	possible remediations consequences of fixes	10 10 10	scale back emissions carbon sequestration