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ABSTRACT

We investigate whether rings around extrasolar planets could be detected from those planets’ transit light
curves. To this end, we develop a basic theoretical framework for calculating and interpreting the light curves of
ringed planet transits on the basis of the existing framework used for stellar occultations, a technique that has been
effective for discovering and probing ring systems in the solar system. We find that the detectability of large
Saturn-like ring systems is largest during ingress and egress and that a reasonable photometric precision of
�(1 3) ;10�4 with 15 minute time resolution should be sufficient to discover such ring systems. For some ring
particle sizes, diffraction around individual particles leads to a detectable level of forward-scattering that can be
used to measure modal ring particle diameters. An initial census of large ring systems can be carried out using
high-precision follow-up observations of detected transits and by the upcoming NASA Kepler mission. The
distribution of ring systems as a function of stellar age and as a function of planetary semimajor axis will provide
empirical evidence to help constrain how rings form and how long rings last.

Subject headinggs: occultations — planets: rings — planets and satellites: individual (HD 209458b) —
techniques: photometric

1. INTRODUCTION

The present understanding of extrasolar planets resembles
that of solar system planets when Galileo first used the tele-
scope for astronomy in 1610. He discovered that the planets of
our solar system variously display disks, phases, moons, and
ring systems (Galilei 1989). Although the planets he was study-
ing had been known for thousands of years, before Galileo’s
telescopic observations scientists knew only the character of
their motions and lacked a method for learning more. Now that
the orbital parameters for 120 planets orbiting other stars are
available, we are looking for the breakthrough techniques that
will lead us to the next level of understanding for these new
extrasolar planets, just as Galileo’s telescope did 400 years ago
for the planets known in ancient times. We think that the most
promising technique for characterizing extrasolar giant planets
in the near future is precision photometry.

Photometric monitoring of stars has resolved one transit-
ing planet detected by radial velocity methods, HD 209458b
(Charbonneau et al. 2000; Henry et al. 2000), and three more de-
tected by ground-based transit surveys: OGLE-TR-56b (Udalski
et al. 2002b; Konacki et al. 2003), OGLE-TR-113b (Udalski
et al. 2002a; Bouchy et al. 2004; Konacki et al. 2004), and
OGLE-TR-132b (Udalski et al. 2003; Bouchy et al. 2004). Fit-
ting the transit light curve of HD 209458b allowed Brown et al.
(2001) to measure the size of the planet’s disk, which deter-
mined HD 209458b to be a gas giant like Jupiter. Further obser-
vations of the wavelength dependence of HD 209458b’s transit
light curve revealed the presence of upper atmospheric sodium
(Charbonneau et al. 2002) and an extensive hydrogen envelope
(Vidal-Madjar et al. 2003).

Extrasolar planets in orbits not in the plane of the sky (i.e.,
not face-on) should show phases. Although searches to date
have not detected the photometric signature expected for the

phases of orbiting extrasolar planets, these studies were able
to place constraints on the reflective properties of close-in
giant planets (Charbonneau et al. 1999; Collier Cameron 2002;
Leigh et al. 2000).

Sartoretti & Schneider (1999) showed that large moons
around transiting extrasolar planets should reveal themselves
both by additional stellar dimming while they transit and by
their effect on the transit timing of their parent planets. Using
transit photometry from the Hubble Space Telescope (HST ),
Brown et al. (2001) employed this technique to search for
moons orbiting HD 209458b but found no evidence for any,
consistent with theory for the orbital evolution of such moons
(Barnes & O’Brien 2002).

The purpose of the present work is to predict what obser-
vational photometric transit signatures a ringed planet might
make and to point out the possible scientific value of a survey
for such signatures. It is not intended to be a final or compre-
hensive theory for the study of extrasolar rings in transit. It is
intended to serve as a guide for observers, so that they might
have insight into what the source of the unusual deviations in
their transit light-curve residuals might be.

In this paper, we first investigate the possible science that
could be done from a transit photometric ring survey. Next,
we study the practicality of detecting systems of rings around
extrasolar giant planets using transit photometry by looking
into the effects of extinction and diffraction. Last, we simulate
a transit of Saturn as a well-known example.

2. MOTIVATION

2.1. Ringgs in the Solar System

Ring systems orbit each of the giant planets in our solar sys-
tem. The rings are made up of individual particles orbiting
prograde in their host planet’s equatorial plane. However, each
system of rings is unique, differing in character, radial and azi-
muthal extent, optical depth, composition, albedo, and particle
size. See Table 1 for a brief summary of what is known about the
rings of our solar system.
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Among solar system planets, by virtue of its rings’ large
effective cross-sectional area (which we define to be the prod-
uct of the rings’ actual cross-sectional area and one minus their
transmittance), Saturn by far has the greatest capability to
block starlight during a transit. Thus, for the remainder of this
paper, we concentrate on ring systems with similar radial ex-
tent and optical depth, which we refer to as Saturn-like ring
systems. The ring systems of Uranus, Neptune, and Jupiter re-
main undetectable with current or predicted future photomet-
ric capabilities, and thus, our analysis is applicable to only the
aforementioned large Saturn-like ring systems.

2.2. Ringgs in Extrasolar Systems

A survey of ring systems orbiting extrasolar giant planets
can potentially address the two big-picture questions about ring
systems: (1) How do rings form? and (2) How long do rings
last?

If Saturn’s ring system formed recently and ring systems
decay quickly, then extrasolar ring systems as spectacular as
Saturn’s should be rare. If ring systems around extrasolar giant
planets are shown to be common, then ring systems are either
long lived, easily and frequently formed, or both.

The typical lifetime of ring systems can be tested directly on
the basis of the distribution of ring systems detected around
stars of differing ages. If ring systems survive for many billions
of years, then the frequency of ring systems as a function of
stellar age should be either flat (if rings are primordial) or
increasing (if they are formed by later disruptive events). If
rings are less prevalent around planets orbiting older stars, then
typical ring lifetimes can be constrained by the observations.

Uncertainties in stellar age measurements are notoriously
large, though, and those uncertainties propagate into any sub-
sequent estimate of ring formation times and lifetimes using
our method. It seems reasonable that 10–20 ringed planets
would be necessary to attempt this type of analysis, a number
possibly in excess of the number of ringed planets Kepler
alone will discover, depending on what fraction of planets have
Saturn-like ring systems. On the other hand, Kepler might
discover that a large fraction of very young (<1 Gyr) planets
have ring systems, thus improving the statistics and revealing
a primordially created population of rings. At present, we lack
the basic understanding to create a model to predict the sta-
tistics for ring distribution as a function of stellar age.

Photometry during stellar occultations revealed the Uranian
and Neptunian ring systems; photometry of extrasolar giant
planet transits can be used to search those planets for rings.
Note, though, that an extrasolar ring census could also be done
using photometry of reflected light from directly detected plan-
ets (Dyudina et al. 2003; Arnold & Schneider 2004) or by
microlensing (Gaudi et al. 2003).

Planets with small semimajor axes are most likely to tran-
sit. However, ring systems around the most close-in planets
(semimajor axis less than�0.1 AU) are expected to decay over
timescales that are short compared with the age of the solar

system, because of such effects as Poynting-Robertson drag
and viscous drag from the planet’s exosphere (Gaudi et al.
2003). Although the currently ongoing transit searches are
aimed at finding only these short-period planets (Horne 2003),
the Kepler space mission (see Jenkins & Doyle 2003 and ref-
erences therein) will monitor a single region of the sky for up
to 4 years and be capable of detecting transiting planets with
any period.
For planets with periods greater than the length of a pho-

tometric survey, the periods cannot be determined and thus
the planets cannot be followed up. As we show in this paper,
though, the Kepler mission should attain sufficient temporal
resolution and photometric precision to detect Saturn-like ring
systems without additional observations. The number of tran-
siting planets at 10AU that we expect to be detected is low. Using
the approximate detection probability R�=ap

� �
2=�ð Þ Tobs=Ppln

� �
,

where R* is the stellar radius and ap is the planet’s semimajor
axis, for planets with periods (Ppln ) longer than the observation
time (Tobs), if every star had a Saturn then Kepler would find
about five among the 100,000 stars it will monitor. If all Saturn-
like ring systems are made of water ice, then only transiting
planets with large semimajor axes can possess rings, and there-
fore, the statistics for a ring survey of extrasolar giant planets
are not good.
However, not every large ring system is necessarily made of

water ice. Although the composition and temperature of Sat-
urn’s rings may yet prove necessary for their formation and
continued existence, we cannot at present rule out silicate rings
inward of the ice line, metallic rings around close-in planets, or
rings made of lower temperature ices at larger planetary semi-
major axes. Kepler will find and search 50 HD 28185b–type
giant planets at 1 AU, if every star has one. The presence or
absence of these unfamiliar ring systems will help constrain the
processes involved in the formation and evolution of ring
systems as a whole.

3. EXTINCTION

3.1. Methods

Rings affect a planet’s transit light curve in two ways: ex-
tinction and scattering. Multiple scattering is negligible in most
cases. Extinction occurs as a result of the interception of in-
coming starlight by ring particles that either absorb, reflect, or
diffract the light, thus removing it from the beam. The amount
of light transmitted through any given portion of the ring
is equal to e�� /�, where � is the normal optical depth and � is
equal to the sine of the apparent tilt angle of the rings (if zero,
the rings are edge-on). The factor � compensates for the in-
creased extinction at low tilt angles.
No present or near-future technology can resolve other main-

sequence stars, much less a planet in transit across a star’s disk.
Instead, we calculate the total stellar brightness that would be
observed during the transit and determine whether the structure
of dimming expected for transiting planets with rings could be

TABLE 1

Characteristics of Known Ring Systems

Planet Ring Particle Size Ring Composition Ring System Age Ring Origin

Saturn ............................ 0.01–10 m Water ice Young? Unknown

Uranus ........................... Not yet measured Uncertain Unknown Unknown

Neptune ......................... Not yet measured Uncertain Unknown Unknown

Jupiter............................ Mostly <1 �m Silicate dust Continuously replenished Hypervelocity impacts into adjacent moonlets
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differentiated from the structure expected for planets without
rings.

To determine the amount of expected dimming, we compare
the integrated stellar surface brightness with the flux inter-
cepted by a planet and its hypothetical ring system. The stellar
surface brightness I as a function of projected distance from the
star’s center, �, is expressed in terms of � ¼ cos (sin�1(�=R�))
as in Barnes & Fortney (2003), where c1 and c2 are coefficients
that parameterize the limb darkening:

I(�)

I(1)
¼ 1� c1

(1� �)(2� �)

2
þ c2

(1� �)�

2
: ð1Þ

The constants c1 and c2 define the character of the limb dark-
ening, with c1 measuring the overall magnitude and c2 the
second-order shape. This nontraditional limb-darkening pa-
rameterization allows us to make a meaningful representation
of stellar limb darkening by using a single parameter, c1, in-
stead of two or more (see also Brown et al. 2001, x 3; our c1
corresponds to their u1 þ u2) and is therefore more appropriate
for use in fitting transit light curves.

We calculate the total stellar flux (F0) by integrating I(�)
across the disk of the star over the projected distance from the
star’s center, �:

F0 ¼
Z R�

0

2��I (�)

(R0)2
d�: ð2Þ

The distance from the star to the observer, R 0, drops out in
equation (4) and so is not calculated explicitly.

To determine the fraction of starlight blocked by the planet
or intercepted by ring material, we integrate over both � and
the apparent position angle �:

Fblocked ¼
Z R�

0

Z 2�

0

I(�) 1� T (�; �)½ �
(R0)2

� d� d�; ð3Þ

where T(�, �) is the fraction of light transmitted at the cor-
responding location (�, �). The relative flux detected by an ob-
server at time t is then

F(t) ¼ F0 � Fblocked

F0

: ð4Þ

This algorithm is similar to the one that we used in Barnes &
Fortney (2003) but with an explicit azimuthal integral to in-
corporate ring effects.

As we demonstrated in Barnes & Fortney (2003), the dif-
ference between the transit light curve of a given planet and
the light curve of that same planet with an additional feature
(such as rings or oblateness) is not an appropriate measure of
the detectability of the feature. Because the parameters of the
transit such as the planet radius (Rp), stellar radius (R*), im-
pact parameter (b ¼ �min=R�), and stellar limb darkening (c1)
are initially unknown and must be determined using a fitting
process, the ring manifests itself as an astrophysical source of
systematic error in the measurement of these quantities. These
errors act to simulate the transit of the ringed planet and thus
diminish the ring detectability. We then define the detectability
of a ring around a transiting planet to be equal to the difference
between the ringed planet’s transit light curve and the light
curve of the planet-only model that best fits the ringed planet’s
light curve.

3.2. Results

Figures 1 and 2 show the expected detectability (in extinction
only) of a planetary ring. In these figures, we simulated transits
of a spherical 1RJ planet with a � ¼ 1:0 ring in its equatorial
plane extending from 1.5RJ to 2.0RJ to show the character that
the detectability of rings might have. We address more realistic
ring systems in x 5. Although the particular light curves shown
are for a planet with a semimajor axis of 1.0 AU, the detect-
ability for planets at other distances from their stars is the same,
differing only in the timescale. Thus, the results in this section
apply equally well for transiting planets that orbit their stars at
10 AU and for close-in planets. For a 1 M� star, to obtain the
detectability curve of a planet with semimajor axis ap, multi-
ply the values on the time axis by the factor ap=1:0 AU

� �
1=2.

Transits of planets with differing radii and ring structures differ
quantitatively from those plotted in Figures 1 and 2.

For each case, the extinction of starlight through the rings leads
to a deeper transit, and therefore a transit light curve’s best-fit
ringless model planet is larger than the real planet. If an observer
were to use the transit depth to estimate the planet’s parameters,
he or she would overestimate the planet’s radius. This could
account for the anomalously large radius of HD 209458b (e.g.,
Bodenheimer et al. 2003). However, we find this explanation
unlikely: rings around HD 209458b would be subject to strong
orbital perturbations because of their proximity to the star (Gaudi
et al. 2003), and any ring system would be in the planet’s equa-
torial plane and therefore would be seen edge-on during transit
if, as expected, the planet is in tidal equilibrium.

We introduce an angle �, which we call the axis angle, to
represent the azimuthal angle around the orbit normal corre-
sponding to the direction that the planet’s rotational angular
momentum vector points (see Fig. 3). We measure � from the
direction that the planet is traveling at midtransit, and positive
is defined to be toward the star. The axis angle thus corre-
sponds to the planet’s season at midtransit, with � ¼ 0 being
the northern fall equinox, � ¼ �=2 being the northern summer
solstice, � ¼ � being the northern spring equinox, and � ¼
3�=2 being the northern winter solstice.

We assume the rings to be two-dimensional, which is
quite a good approximation for the rings of Saturn, Uranus,
and Neptune: Uranus’ rings, for instance, are only 1 m thick
(Karkoschka 2001). Hence, the rings we model do not at all
contribute to the light curve if they are edge-on during transit,
and thus, the detectability for planets with obliquity (q) near 0�

or with axis angle (�) near 0 or � is negligible. In addition,
because of the geometry of the problem, transits for a given
axis angle and its opposite are identical. Hence, the transits of
planets at solstice, such as those in Figure 1, could have either
� ¼ �=2 or � ¼ ��=2 ¼ 3�=2.

In the symmetric case (� ¼ �=2; Fig. 1), for low impact
parameter transits (b ¼ 0:2, top), the light curve of the ringed
planet starts earlier than that of that transit’s best-fit spherical
planet because the rings encounters the stellar limb first, leading
to an initial downturn in the detectability curve. That curve
turns around when the best-fit naked planet hits and the ring’s
inner gap encounters the stellar limb at nearly the same time,
causing a sudden change in the sign of the derivative, whereby
the best-fit light curve starts to overtake the ringed planet in
total light blocked. As a large fraction of the ringed planet itself
starts to occult the star, the two hypothetical transits become
equal about midway through their ingresses. This trend contin-
ues past the midpoint until the inner gap once again causes the
simulated ringed planet transit to brighten relative to its best-fit
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model, and by the end of ingress the edge of the ring encounters
the limb of the star at second contact. The bottom of the transit is
nearly flat, as both the planets block the same fraction of star-
light. This process repeats itself in reverse upon egress.

All things being equal, a nonringed planet would have a
much shorter ingress and shallower transit depth than its ringed
twin. But all things are not equal. What happens instead is that
the best-fit naked spherical planet model mimics the simu-
lated ringed planet’s light curve by lengthening the ingress of
the model fit and increasing the model’s transit depth. The re-
sulting fits have a higher impact parameter (b) and greater
stellar radius (R*), which both act to increase the time that the
model planet takes to cross the star’s limb. At the same time,
the model planet’s radius (Rp) is higher than that of the actual
planet to account for the greater effective cross-sectional area

that the rings provide the ringed planet. The stellar limb-
darkening coefficient (c1) differs only slightly in this case to
compensate for the different transit impact parameters, and its
inability to completely do so results in the downward bow of
the detectability curve through the transit bottom.
At this low impact parameter, the most important distinction

between the ringed planet transit and its best-fit model is the
ringed planet’s longer ingress, or earlier first contact and later
second contact. Because a planet’s rings extend equally far from
the planet’s center regardless of obliquity, low-obliquity rings
(q�10�) are as detectable as high-obliquity rings (qk 30�) but
remain distinctive by their smaller central clearing. Although
the ingress lasts only about 45 minutes for a planet with
HD 209458b’s semimajor axis, a planet at 1 AU would have
a more leisurely (and more easily sampled) 3.75 hr ingress.

Fig. 1.—Detectability of extinction through symmetric planetary rings in transit, defined as the difference between the transit light curve of the given ringed planet
and its best-fit spherical planet model. These graphs show the detectabilities for rings tilted directly toward the observer; those in Fig. 2 show the detectability for
asymmetric geometries. Each graph shows the detectability for planets of four different obliquities, 10� (dotted line), 30� (dash-dotted line), 45� (dashed line), and 90�

(solid line; face-on) for simulated transits with impact parameter 0.2 (top), 0.7 (middle), and 0.9 (bottom). The signal is greater than the typical noise limit for both
Kepler and the HST HD 209458b observations, 1 ; 10�4 (gray lines), but is very localized in time to the regions surrounding ingress and egress. Both high
photometric precision and high temporal resolution would be necessary to detect the ring signal.
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The signature of a symmetric ringed planet is similar to but
distinct from the detectability signature of a highly oblate
planet (Barnes & Fortney 2003). The signature of a symmet-
ric ringed planet returns to zero three times during ingress,
while the detectability signature of an oblate planet returns to
zero just twice. The difference between the two is caused by
the interior clear area between the planet and the inner edge
of the ring. A planet with rings that extend all the way down
to the top of the atmosphere would be very difficult to dis-
tinguish from a very highly oblate planet by observational
means.

At moderate impact parameters (i.e., b ¼ 0:7; Fig. 1,middle),
expected ring detectabilities are similar in character and mag-
nitude to those at low impact parameter, but they last longer
because of longer ingress and egress times. However, sym-

metric low-obliquity ringed planets no longer have such ex-
tended ingress times relative to a ringless planet and thus have
significantly lower detectabilities than they do at lower impact
parameters.

High impact parameter symmetric transits of ringed plan-
ets (i.e., b ¼ 0:9; Fig. 1, bottom) deviate from the patterns de-
scribed above. Planets with high obliquity have ring systems
that extend beyond the star’s edge throughout the transit and
thus become grazing. For lower obliquity planets transiting at
high impact parameter, the first contact starts no earlier than
that of a ringless planet, and thus, their detectabilities are lower
than the expected noise levels.

When a ringed planet is not tilted directly toward or away
from the observer, the light curve that results when the planet
transits its star is asymmetric. The asymmetry is greatest for

Fig. 2.—Detectability of extinction through asymmetric planetary rings in transit, defined as the difference between the transit light curve of the given ringed
planet and its best-fit spherical planet model. These graphs show the detectabilities for rings tilted in a direction such as to maximize their transit detectability, so the
axis angle � is set to �/4. Fig. 1 shows the detectability for symmetric geometries. Each graph shows the detectability for planets of four different obliquities, 10�

(dotted line), 30
�
(dash-dotted line), 45

�
(dashed line), and 90

�
(solid line; face-on) for simulated transits with impact parameter 0.2 (top), 0.7 (middle), and 0.9

(bottom). The signal is greater than the typical noise limit for both Kepler and the HST HD 209458b observations, 1 ; 10�4 (gray lines). The asymmetric signal is
greater than that in the symmetric case, but only by a factor of �2.
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planets in midseason, those with � ¼ �=4ð Þ þ n�=2ð Þ, where n
is any integer, and the predicted detectability of rings around
these planets is displayed in Figure 2. Differences from the
symmetric case come about because of both differing lengths of
ingress and egress times and a different part of the planet-ring
system making first contact with the stellar limb. These effects
are most important when the planet’s projected equatorial plane
(i.e., the line containing the planet center and the apparent
farthest edges of the rings) is parallel to the stellar limb during
ingress or egress.

At low impact parameter (b ¼ 0:2; Fig. 2, top), the planet’s
direction of motion is nearly perpendicular to the stellar limb,
and thus, the differences between the symmetric and asymmetric

light curves are small, changing primarily the intensity of the
positive and negative deviations but not their character. Small to
moderate planetary obliquities (10� < q< 60�) therefore have
transit light curves that strongly resemble the light curves of the
symmetric case. The least detectable configuration at low impact
parameter in the midseason case is that of planets with obliquity
q ¼ 90�. These Uranus-like objects have symmetric transit light
curves for all impact parameters and low detectabilities at b ¼
0:2 because the stellar limb is covered by the rings at the same
time the rings’ parent planet is covering the limb (a situation that
the best-fit nonringed planet simulates well).
Differences between the time required for ingress relative

to the time for egress dominate the light curves for planets

Fig. 3.—Schematic of transit geometry and variable definitions.
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transiting near the critical impact parameter (b ¼ 0:7; Fig. 2,
middle). The most detectable cases are those in which the
projected equatorial plane is parallel to the limb: the q ¼ 30�

and q ¼ 45� cases in Figure 2. For these ringed planets, the first
contact occurs after and the second contact occurs before the
contacts for their best-fit ringless counterparts in the case in
which the apparent planet motion is left to right (see diagram at
top left of each graph in Fig. 2). During egress from transit, the
rings encounter the stellar limb before the best-fit spherical
planet and hang on to the limb after the best-fit ringless planet
ends its transit. These differences in limb-crossing time result
in a large, initially positive detectability (in the sense of ringed
minus best-fit nonringed) as the best-fit planet starts its transit
before the ringed planet, a transition to negative values while
both are near second contact, and then a return to nearly zero
detectability at the transit bottom, when both objects are en-
tirely in transit. On egress, the resulting detectability is again
initially positive as the ringed planet light curve brightens
when the rings exit transit before the limb of the best-fit planet,
and again becomes negative when the best-fit planet exits tran-
sit before the lingering final edge of the rings of the ringed
planet. This character of the transit light curve is appropriate
for planets with ��=2<�<�=2. For planets with �=2 <
� < 3�=2 the sequence would be time reversed. For low-
obliquity ringed planets transiting at b ¼ 0:7, the asymmetric
component of the transit light curve is overshadowed by the
symmetric component and thus in character resembles a cross
between the two. At maximum obliquity (q ¼ 90

�
), the detect-

ability curve is symmetric but moderately large, with maxima
resembling the � ¼ 0� case in magnitude.

The detectabilities of asymmetric ringed planets when
transiting at high impact parameters (b ¼ 0:9; Fig. 2, bottom)
are similar to those for b ¼ 0:7, except that the transit light-
curve sequences are truncated because of the grazing nature
of this particular transit. Because there is no second or third
contact, there is no transit bottom, and the detectabilities never
return to nearly zero as they do in the nongrazing cases.

The Discovery mission Kepler, with typical photometric
precision 1 ; 10�4 and 15 minute sampling (Jenkins & Doyle
2003), should be most sensitive to planets with large ring sys-
tems and periods longer than �1 yr, irrespective of scattering
(see x 4). Higher cadence measurements with similar precision,
as acquired by HST (Brown et al. 2001), which may be pos-
sible in the near future from the ground (Howell et al. 2003),
would be capable of detecting rings around more close-in
planets, if such rings exist (see x 2).

4. DIFFRACTION

4.1. Theory

The calculation of scattering from a transiting extrasolar ring
system resembles the calculation of scattering from a ring in
the solar system as it occults a star. In both problems, starlight
passes through a thin slab of ring particles and is altered on its
way to the observer, who measures the star’s brightness. How-
ever, while for solar system applications the distance between
observer and ring is small and the observer-star and ring-star
distances are both large, in the transit case the distance between
the ring and the star is small and the observer-star and observer-
ring distances are large. French & Nicholson (2000) analyzed
photometry from Saturn’s occultation of the star 28 Sgr in 1989,
and we base our theoretical models on theirs, with appropriate
modifications for the altered circumstances between occulta-
tions and transits.

Particles between 1 mm and 10 m in size contribute most of
the opacity in the rings around Saturn, Uranus, and Neptune
(French &Nicholson 2000; Cuzzi 1985; Ferrari & Brahic1994).
Particles such as these, much larger than the wavelength of light
passing through them, scatter light in the forward direction
when incident light diffracts around individual particles. The
relative scattered flux as a function of the scattering angle, the
phase function P(�) (if we assume spherical particles; French &
Nicholson 2000), is

P(�) ¼ 1

�

J1 2�a sin �ð Þ=kð Þ
sin �

� �2
; ð5Þ

where a is the particle radius, k is the wavelength of the light,
and the function J1 represents the first Bessel function. Equa-
tion (5) integrates to 1.0 over the forward 2� sr to conserve
flux, but it is accurate only when �T2�. The shape of this
function resembles that of a stellar diffraction point-spread
function from a telescope. In effect, it represents the collective
Poisson spots of the ring particles viewed from, for example,
50 pc away.

The total flux diffracted by the ring particles is equal to the
flux that they intercept. This can be inferred from Babinet’s
principle: the diffraction of a beam caused by a particular screen
containing both transparent and opaque areas appears the same
as the diffraction of the screen’s inverse, which has the opaque
and transparent areas switched (see, e.g., Hecht1998; the phase
of the diffracted light is opposite in each case). Hence, the flux
of the light diffracted by a ring filled with particles of radius a is
the same as the flux of diffracted light coming from a black sheet
peppered with holes of radius a, which is equal to the light
transmitted through the holes in the sheet. Thus, in addition
to absorption, diffraction provides an equal source of opacity
for photons traveling straight through the ring. This effect can
be confusing (Cuzzi 1985), so we follow French & Nicholson
(2000) in explicitly representing the optical depth resulting
from geometrically intercepted, absorbed light as �g and the
total optical depth, including scattering effects, as � ¼ 2�g.

The actual effective geometric cross-sectional area of the
ring particles varies with optical depth because of shadowing
effects. We express the total scattered flux that emerges from a
point on the ring integrated over all angles (FR

sc) as a function of
the flux incident on that point (Fi):

FR
sc

Fi

¼ �g
�
e�2�g=� ð6Þ

(French & Nicholson 2000). FR
sc peaks at � ¼ 1 with the value

(2e)�1. The variable � is equal to the sine of the apparent tilt
angle of the rings (zero is edge-on) and compensates for the
correspondingly higher optical depths for lower tilt. The flux
exiting the ring in the direction of the observer (designated �)
at a specific angle (�) when diffracted from a point-source star,
pF�

sc, is the product of the total scattered flux and the phase
function, where � corresponds to the angle between the point-
source star–ring particle line and the line of sight,

pF�
sc(�) ¼ FR

scP(�) ð7Þ

(French & Nicholson 2000).
In the occultation case, the star behaves as a point source

when viewed from both Earth and the ring. However, for
transits the planet is close enough to the star that the star must
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be treated as an extended source. Hence, the scattered flux from
a point on the ring is not simply the product of the incident flux
on the ring and the phase function, as in the solar system case,
because � is not constant. Instead we integrate over the stellar
disk to derive the total scattered flux at Earth from across the
extended star, eF�

sc .
We first calculate the illumination provided for each parcel

of the star onto the ring. To determine this incident flux, we
treat the star as a limb-darkened Lambertian disk. The flux
incident on a point in the rings from a region of that disk
depends on the emergent stellar flux from the region as a
function of the projected distance from the star’s center, F*(�)
(which we get from eq. [1]); the area of the region, E; and the
distance between the region and the ring portion in question,
which we approximate to always be ap, the planet’s semimajor
axis:

Fi(R; �; �) ¼ F�(�)
E cos2(�(R; �; �))

�a2p
: ð8Þ

One of the two cos � factors derives from our assumption
that the star is a flat disk, and the other comes from the need
to measure the incoming flux in a plane perpendicular to the
observer’s line of sight. Although the second cos � is real,
the first is an artifact of our model, and as such is probably
not representative of an actual planet around a spherical star.
However, in the transit situation, � is small, and the extra cos �
does not inflict a significant adverse effect on the resulting
calculation.

To obtain the total scattered flux from the extended star, we
integrate the scattered flux for a point source, equation (7), over
the projected distance from the star’s center (�) and the azi-
muthal angle (�), using equation (8) for the incident flux, Fi.
The total flux emergent from the ring, scattered from the ex-
tended star in the direction of the observer [eF�

sc(R)], comes
from integrating the star’s flux over each infinitesimal area
of the star, E ¼ � d� d�, times the phase function for the par-
ticular angle � between that area, the scatterer, and the observer:

eF�
sc(R) ¼

Z R�

0

Z 2�

0

FR
sc(�; �)P(�(R; �; �))� d� d�: ð9Þ

Because of circular symmetry around the center point of the
limb-darkened star, the total integrated incident flux is a func-
tion of only the projected distance of the ring from the star’s
center, R, not of the azimuthal location of the rings around the
star, �. When incorporating scattered light into the calculation
of transit light curves, we integrate equation (9) numerically
using a Runge-Kutta algorithm, with an adaptive step size, from
Press et al. (1992).

4.2. Results

We show the relative contribution of diffracted light through
a cloud of same-size particles in Figures 4 and 5. The amount
of refracted light per unit projected area relative to the flux per
unit area at the star’s apparent center is plotted as a function of
particle size for differing projected distances from the star
center (Fig. 4) and as a function of projected distance from
the star center for differing particle sizes (Fig. 5). For each
we assume the planet’s semimajor axis is 1.0 AU and that its
parent star has a radius of 1 R� with a limb-darkening coef-
ficient c1 equal to 0.64 (u1 þ u2 as measured by Brown et al.
[2001] for HD 209458b). The optical depth factor from

equation (6) is not included; to obtain eF�
sc for any particular

optical depth, multiply the values on the graph by the right
side of equation (6).
In the limit of very large particle sizes (�0.1 mm or larger

for the 1 AU case), the angles by which light is diffracted
around particles becomes very small. These very large particles
diffract the light only from the point directly behind them on
the star toward the observer, and therefore, in the large-particle
limit, the maximum diffracted flux per unit area at a given point
is equal to the flux emitted by the star at the point behind the
ring (times the optical depth factor). Hence, to the rightward
edge of Figure 4, the scattered fluxes approach the flux levels at
the equivalent point on the stellar disk. In Figure 5, the flux
scattered by a sufficiently large particle would trace the limb
darkening of the star for �< 0:5D� and be zero for all values
larger than 0.5D*, similar to the curve plotted for the 1 mm
particles.
For a transiting ring made up of large particles, diffraction

does not affect the shape of the light curve. However, because
light diffracted out of the incident beam is redirected to the
observer, diffraction would act to partially fill in the light curve
during the transit, reducing the total transit depth (Fig. 6). The
reduced depth gives the impression that the rings are dispersing
less flux than they really are. Thus, if the ring particles are
large, the measured optical depth of the rings is equal to the

Fig. 4.—Scattering effectiveness as a function of particle size at 0.5 �m for
hypothetical parcels of ring particles located 1 AU from the star but at varying
projected distances from the star’s center. We used a stellar diameter of 1.0 R�
with a limb-darkening coefficient c1 equal to 0.64 (similar to the measured
value for HD 209458); the limb darkening in the inset represents that mea-
sured value. For the projected distances depicted in the inset at top left we plot
� ¼ 0:0R� (thick solid line), 0.5R

*
(dotted line), 0.9R

*
(dot-dashed line), 1.0R

*
(short-dashed line), 1.1R

*
(long-dashed line), and 1.5R

*
(thin solid line). We

have not included the effects of optical depth on the amount of light scat-
tered. To get the actual expected scattered flux, multiply the values in this
graph by the �-factor, on the right side of eq. (6). At low particle diameters,
the scattering effectiveness approaches a constant and diminishing value for
all projected stellar distances. For high particle diameters, the effectiveness
approaches the relative flux of the point on the star directly behind the cloud of
particles—zero for points off the limb of the star and corresponding to the limb
darkening while inside the limb. For particle diameters near the critical par-
ticle diameter acrit (see eq. [10]; acrit for the conditions used to generate this
graph is 70 �m), the brightness for clouds of ring particles located just off the
star’s limb is maximized.
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geometric optical depth, �g ¼ �=2, because the light diffracted
out of the beam is entirely replaced (the same as if there were
no diffraction at all).

For small particles (smaller than�10 �m for the 1 AU case),
incoming light is diffracted nearly isotropically. In this limit
only a small fraction of the incident flux is diffracted in any one
direction, and the received scattered flux is constant over the
planet’s orbit (except, of course, during the secondary eclipse).
The diffracting behavior of such particles is represented by
the leftmost edge of Figure 4 and resembles the behavior
of the 10 �m particle in Figure 5.

Since for a ring made up of small particles the diffracted flux
reaching the observer is unvarying, the shape of the planet’s
transit light curve is the same as it would be in the absence of
scattering (Fig. 6). For this case, the best-fit measurement of
the ring’s optical depth would represent the total optical depth,
� ¼ 2�g: a negligible fraction of the diffracted light reenters
the beam.

Note that the large-particle and small-particle cases cannot
be distinguished on the basis of their transit light curves alone.
If a ring was detected in transit but no distinctive signature of
scattering was found (like those described below), it would be
impossible to determine whether the ring’s component par-
ticles were large or small. Likewise, the proper interpretation
of the measured optical depth would also be degenerate.

For ring particles that lie in between these extremes of size,
scattering affects the light curve and can be used to infer the
size of the component particles that make up the ring. In this
moderate regime, the light diffracted toward the observer from
a parcel of ring particles comes from a circularly symmetric
region behind the parcel that grows in size as the particles’
diameters shrink. This footprint, shown in Figure 7, represents
a weighted map of where the photons scattered toward the
observer come from. Most of the light comes from the area
within the first fringe.

The effect of scattering on a transit light curve is maximized
for ring particles near the size that has its first diffraction fringe a

projected distance R* from the particles. This critical particle
size is large enough to allow the footprint to scatter a lot of light
toward the observer while the ring is in front of the star’s disk,
but small enough to scatter significant light toward the observer
while the planet is off the limb of the star as well. We set � to the
first zero of the phase function, P(�) (eq. [5]), and solve to
obtain the critical particle size, acrit , which we define to be the
ring particle radius near which the effect of diffraction on the
light curve is maximized, using the small-angle approximation:

acrit ¼ 0:61
apk
R�

: ð10Þ

Transit light curves for ringed planets change significantly
as a varies within an order of magnitude of acrit. However,
for particle diameters ak 10acrit and aP acrit=10, transit light
curves are indistinguishable from those for a ¼ 10acrit and for
a ¼ acrit=10, respectively. Thus, large particles are those with
a3acrit, and small particles are those with aTacrit.

Parcels of ring-containing particles with diameters within a
factor of�10 of acrit scatter light to the observer both before and
after they encounter the stellar limb, as viewed from Earth. This
leads to an increased photometric flux measured just before first
contact and just after fourth contact during a transit event. The
light-curve signature (see Fig. 6, inset) of this ramp is a diag-
nostic of diffractive scattering. Moreover, the characteristic size
of the extrasolar planet ring particles can be determined from
the shape and magnitude of the pre- and posttransit scattering
signature. Only if the ring particle diameters are within a factor
of 10 of acrit can anything at all be discerned about the particle
sizes. Otherwise, light-curve models using very large particles
and those using very small particles fit equally well.

Fig. 6.—Changes introduced into a transit light curve when diffractive
forward-scattering is incorporated into the calculation. This figure shows transit
light curves at 0.5 �m for a 1RJ planet with a 1.5RJ–2.0RJ ring of optical depth
unity, composed of particles of varying sizes. The planet orbits its 1 R�,
c1 ¼ 0:64 star at 1 AU and transits with an impact parameter of 0.2. The bottom
solid line represents the light curve calculated with extinction only—no scat-
tering. The rest of the curves do incorporate scattering, along with extinction,
and do so for differing particle diameters: 10 �m (dotted line), 20 �m (dash-
dotted line), 30 �m (short-dashed line), 70 �m (long-dashed line), and the
theoretical (although meaningless in practice) limit of infinite particle size (top
solid line).

Fig. 5.—Scattering efficiency calculated in the same way as in Fig. 4 but
graphed as a function of projected distance from the star center and for dif-
ferent particle diameters. The shading in the background represents the actual
limb-darkened stellar flux.
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Light-curve ramps similar to the ones shown in Figure 6 can
result from refraction through the outer layers of the atmosphere
of a transiting extrasolar giant planet. Hubbard et al. (2001)
showed that refractive scattering will likely become important
only for planets with semimajor axes of tens of AU or greater.
In particular, our calculations (using the codes developed for
Hubbard et al. [2001]) show that the refraction ramp for a typ-
ical transiting extrasolar giant planet at 14 AU would be 100
times smaller than the ring diffraction ramps in Figure 6. There-

fore, a detected light-curve ramp for a transiting ringed planet
can reasonably be ascribed to diffraction from ring particles.
Near acrit, the rings’ diffractive scattering affects the planet’s

transit light curve between the first and fourth contacts as well.
As shown in Figure 6, the depth of the transit bottom decreases
as ring particle size increases because inside the transit, larger
particles scatter light incident on the ring into the direction of
the observer more efficiently than small particles do. If a� acrit,
more of the diffraction footprint overlaps with the star near
midtransit than at the beginning and end of transit. In this case,
more diffracted light is detected at midtransit, and the transit
light-curve bottom is flattened. Fitting the simulated light curves
plotted in Figure 6 with spherical planets, we calculate that the
flattening is of order �c1 � 0:1 for a standard ring.
Although the light-curve deviations described in this section

illustrate those that we would expect to see because of dif-
fraction through planetary rings, they are not a perfect calcu-
lation of what diffraction through a real ring system will look
like. An actual ring system is likely to have complexity in its
radial structure that we have not simulated here. In addition,
real ring particles have a nonuniform distribution of sizes, sim-
ilar to the distribution of particles that make up Saturn’s rings
(French & Nicholson 2000). We are able to say, however, that
diffraction around appropriately sized ring particles can lead to
a ramp in the transit light curve of a ringed extrasolar planet,
that this ramp can be detected, and that such a ramp is greatly in
excess of the expected magnitude for similar ramps resulting
from planetary atmospheric effects.

5. APPLICATION

Saturn’s ring system is distinctly more complex than the
� ¼ 1, 1:5 2:0ð ÞRJ standard ring that we have used up to this
point. In particular, Dyudina et al. (2003) showed that the
intricate radial optical depth structure of Saturn’s rings signif-
icantly alters the directly detected orbital light curve relative to
the light curve for radially uniform rings.
To test whether the detectability of complex ring systems

differs substantially from that of our simple standard ring, we
used a radial optical depth profile of Saturn’s rings obtained
during the 28 Sgr occultation in 1989 (French & Nicholson
2003) binned into 39 subrings. We set the rings’ particle di-
ameter to 1 cm, a typical value from French & Nicholson
(2000). We then simulated transits of Saturn at impact param-
eter 0.2, calculated a best-fit spherical planet transit to match,
and subtracted the two to represent Saturn’s detectability.

Fig. 8.—Predicted transit detectability of Saturn’s rings, as might be viewed from 28 Sgr. The magnitude is lower than that for the standard ring because of the
smaller cross-sectional area of Saturn’s rings, but the character of the signal is the same. No scattering is evident, so Saturn’s ring particle size would not be discernible.

Fig. 7.—Diffraction footprint of a hypothetical cloud of 150 �m particles
(located at the center of the image) 1 AU from a 1 R� star (the star’s limb is
depicted as a white circle) as it would look at 0.5 �m. The intensity of each
pixel represents the logarithm of the relative contribution of light that dif-
fraction scatters toward the observer from each area. The area directly behind
the particles contributes most of the diffracted light. The effect of diffraction on
a ringed planet’s transit light curve is most detectable when the radius of the
first dark fringe is �1R

*
. Since this process is reversible, the same pattern

would result if you fired a laser toward the cloud of particles from Earth and
then, hundreds of years later, viewed the resulting diffraction pattern on a
gigantic screen millions of kilometers wide centered on the position of the star.
In practice, because of the nonuniform radii and shape of the ring particles,
such a sharp pattern would never actually occur.
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The detectability of the rings around Saturn, as shown in
Figure 8, is a bit less than the standard ring because the total area
covered is smaller. However, the character of the ring signal is
the same as that of the standard ring. Extrasolar astronomers,
viewing a transit of Saturn with a photometric precision of 10�4

from 28 Sgr, would detect Saturn’s rings as long as the axis
angle � was such that they were not viewed edge-on.

At 10 AU from the Sun, acrit for Saturn is 0.66 mm (from
eq. [10]). Therefore, as calculated, Saturn’s particle size falls in
the large regime, and we would predict no discernible scattering
effects. Figure 8 does not show any significant pre- or post-
transit scattered light, in agreement with our analysis. Without
a positive identification of scattering, the astronomers from
28 Sgr would not know whether the ring particles were large
or small and therefore would not know whether their mea-
sured ring optical depth corresponded to the geometric optical
depth (�g) or the total optical depth (� ; see x 4.2).

6. CONCLUSION

The primary effect rings have on a planet’s transit light curve
is to increase the transit depth. Without knowledge of the rings’
existence, the best-fit unadorned spherical model planet would
have an anomalously large radius and transit closer to b ¼ 0:7
than the actual ringed planet.

The detection of large Saturn-like ring systems requires
photometric precision of a few times 10�4, achievable with
space-based photometers and potentially from future ground-

based platforms. The transit signature of rings is concentrated
at ingress and egress, and therefore ring detection requires high
time resolution photometry.

Diffraction around individual ring particles manifests itself
as forward-scattering that can be detected from transit light
curves as excess flux just before and just after a ringed planet’s
transit. The shape and magnitude of the scattering signal can be
used to discern the ring particles’ modal diameter. The fre-
quency and distribution of rings around planets at different
semimajor axes, of different ages, and with different insolations
can empirically determine how rings form and how long they
last.

In the near future, the experiments described in this paper can
be tested on close-in transiting planets found from the ground,
using follow-up transit photometry from space. Later, the NASA
Discovery mission Kepler will be capable of both detecting
planets with larger semimajor axes and surveying these new
worlds for rings. Together, these observations promise to es-
tablish a rough outline of the distribution of large Saturn-like
ring systems within the next decade.
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I., Szewczyk, O., & Wyrzykowski, x. 2003, Acta Astron., 53, 133
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