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ABSTRACT

We model the asymmetry of the KOI-13.01 transit lightcurve assuming a gravity-darkened rapidly rotating host
star in order to constrain the system’s spin–orbit alignment and transit parameters. We find that our model can
reproduce the Kepler lightcurve for KOI-13.01 with a sky-projected alignment of λ = 23◦ ± 4◦ and with the star’s
north pole tilted away from the observer by 48◦ ± 4◦ (assuming M∗ = 2.05 M�). With both these determinations,
we calculate that the net misalignment between this planet’s orbit normal and its star’s rotational pole is 56◦ ± 4◦.
Degeneracies in our geometric interpretation also allow a retrograde spin–orbit angle of 124◦ ± 4◦. This is the first
spin–orbit measurement to come from gravity darkening and is one of only a few measurements of the full (not just
the sky-projected) spin–orbit misalignment of an extrasolar planet. We also measure accurate transit parameters
incorporating stellar oblateness and gravity darkening: R∗ = 1.756 ± 0.014 R�, Rp = 1.445 ± 0.016 RJup, and
i = 85.◦9±0.◦4. The new lower planetary radius falls within the planetary mass regime for plausible interior models
for the transiting body. A simple initial calculation shows that KOI-13.01’s circular orbit is apparently inconsistent
with the Kozai mechanism having driven its spin–orbit misalignment; planet–planet scattering and stellar spin
migration remain viable mechanisms. Future Kepler data will improve the precision of the KOI-13.01 transit
lightcurve, allowing more precise determination of transit parameters and the opportunity to use the Photometric
Rossiter–McLaughlin effect to resolve the prograde/retrograde orbit determination degeneracy.
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1. INTRODUCTION

The Sun’s planets all orbit in planes that vary in orbital
inclination from one another by just ∼1◦–7◦—a situation that
supports the nebular hypothesis for the solar system’s origin
(see, e.g., Lissauer 1993). The orbital planes all differ by
between ∼3◦ and 7◦ from the Sun’s equatorial plane, and by
∼0.◦3–6.◦3 from the invariable plane (the plane normal to the
net solar system angular momentum vector). Although angular
distances are typically provided for these differences, we think
that they are better shown in two dimensions. Figure 1 shows the
location of the orbital angular momentum vectors for various
solar system objects in ecliptic coordinates.

Given its utility in constraining the origin of the solar system,
measurement of the mutual inclination between extrasolar
planets’ orbits and/or the inclination of extrasolar planets’ orbit
normal relative to their stars’ spin axis—“spin–orbit alignment,”
ϕ—can shed light on the origin of those extrasolar systems as
well. Evidence so far shows that while the solar system is not
unusual, a wide variety of planetary system types exists.

Some systems have planets that are even more nearly
coaligned with each other than those in the solar system. In par-
ticular, the Kepler-11 six-planet system has typical mean mutual
inclinations of just 1◦–2◦ (Lissauer et al. 2011). As evidenced by
Figure 1, a 1◦–2◦ mutual inclination is significantly smaller than
the mutual inclination of the solar system’s terrestrial planets. In-
terestingly, however, the solar system giant planets have mutual
inclinations of 0.◦7–2.◦0, comparable to those in the Kepler-11
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system. We think that this similarity in mutual inclinations be-
tween the solar system giants and the Kepler-11 planets may
indicate similar formation and evolution, but distinctly different
from that of the solar system terrestrial planets. Although copla-
narity of a system’s planets and a planet’s spin–orbit alignment
are distinct measurements, they share the property that the pro-
posed mechanisms for misaligning one will likely misalign the
other as well.

Radial velocity measurements of planet-hosting stars dur-
ing transits can indicate spin–orbit alignment via the
Rossiter–McLaughlin effect. Rossiter–McLaughlin observa-
tions have revealed that a majority of close-in extrasolar planets
appear to be spin–orbit aligned (20 of 31 measurements of λ
tabulated by Perryman 2011, p. 129, are within 2σ of zero).
For example, Winn et al. (2006) showed that HD189733 has
a spin–orbit misalignment of 1.◦4 ± 1.◦1, which Triaud et al.
(2009) later refined to just 0.◦85 ± 0.◦30. HAT-P-1’s measured
inclination of 3.◦7 ± 2.◦1 is consistent with spin–orbit alignment
(Johnson et al. 2008). We note that, based on Figure 1, each of
these planets is more closely spin–orbit aligned than is Jupiter,
which has an inclination of 6.◦1 with respect to the Sun’s equa-
torial plane. Many more planets have been determined to be
spin–orbit aligned to lower precision (e.g., Simpson et al. 2010,
2011; Miller et al. 2010; Hellier et al. 2011, to name a few recent
measurements).

On the other hand, Rossiter–McLaughlin observations have
also revealed a significant population of spin–orbit mis-
aligned planets. For instance, HAT-P-30b is misaligned by
74◦ ± 9◦ (Johnson et al. 2011) and XO-3 is misaligned
by 70◦ ± 15◦ (Hébrard et al. 2009) (see Perryman 2011,
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Figure 1. Relative positions of the angular momentum vectors for the orbits of solar system planets, along with that for the Sun’s rotation and the solar system
invariable plane (plane of the net angular momentum), are plotted in J2000 ecliptic coordinates. Planetary orbit locations calculated from orbital elements from Murray
& Dermott (2000), Sun’s rotation pole calculated from equation given in Seidelmann (1992), and the invariable plane coordinates are from Cox (2000).

Table 6.1 for a summary of spin–orbit alignments). Many plan-
ets are even retrograde, such as HAT-P-11b (Winn et al. 2010b;
Hirano et al. 2011), WASP-17b (Anderson et al. 2010), and
HAT-P-7b (Narita et al. 2009; Winn et al. 2009b). Winn et al.
(2010a) noted that these highly spin–orbit-misaligned planets
occur preferentially around hot stars, implying that planet for-
mation and/or evolution differs around more massive stars.

The Rossiter–McLaughlin effect has also been used to deter-
mine the spin–orbit alignment of stellar binaries (Albrecht et al.
2007, 2009, 2011). In fortuitous cases, a star shows spot activity
in the area under which the planet transits. Those spots’ effects
on the transit lightcurve can then be used to constrain spin–orbit
alignment (Sanchis-Ojeda et al. 2011; Sanchis-Ojeda & Winn
2011; Nutzman et al. 2011).

Barnes (2009) showed that the spin–orbit alignment for
planets orbiting rapidly rotating stars can be determined from
transit photometry alone, taking advantage of the nonunifor-
mity of those stars’ disks (von Zeipel 1924). The nonunifor-
mity introduces characteristic asymmetries into planets’ transit
lightcurves. The photometric technique described by Barnes
(2009) has an advantage over Rossiter–McLaughlin measure-
ments in that it can measure both the longitude of the planet’s
ascending node and the stellar obliquity to the plane of the
sky. As a purely radial measurement, Rossiter–McLaughlin
determines only λ, the projected spin–orbit alignment. The
Rossiter–McLaughlin-measured spin–orbit alignment distribu-
tion must be deprojected in order to ascertain the true distribution
(Fabrycky & Winn 2009).

Recently, Szabó et al. (2011) found an asymmetry in the
Kepler transit lightcurve of KOI-13.01 that they attributed to
spin–orbit misalignment around a fast-rotating star, consistent
with the Barnes (2009) predictions. In this paper, we use this
asymmetry to measure the spin–orbit misalignment angle ϕ

of the KOI-13.01 system using the Barnes (2009) model. The
present work, focused on the measurement of ϕ, leaves to
others the analysis of the complete lightcurve and secondary
eclipse. In Section 2, we describe data reduction of the Kepler
public Q2 lightcurve for this planet, and we describe the
gravity-darkened rapidly rotating star transit lightcurve model
and its application in Section 3. We then show the results
of our fit in Section 4 and discuss the implications of the
measurement in Section 5. We give our concluding remarks in
Section 6.

2. OBSERVATION

The Kepler mission (Borucki et al. 2010) science team first
identified a planet candidate around the star with designation
9941662 in the Kepler Input Catalog (KIC; Brown et al.
2011) in the first two quarters of science data (Q1 and Q2;
Borucki et al. 2011). A discovery paper confirming the resulting
Kepler Object of Interest (KOI) KOI-13.01 as a planet is
presently in preparation (Rowe et al. 2011). The KIC records
the star’s location as 19.13141H +46.◦8684, and provides stellar
parameters of M∗ = 1.83 M�, Teff = 8848 K, and a magnitude
in the Kepler bandpass of Kp = 9.958 (Borucki et al. 2011).
Later additional ground-based spectroscopy by Szabó et al.
(2011) determined M∗ = 2.05 M�, Teff = 8511 ± 400 K,
and a Δmagnitude between KOI-13 and its companion of 0.29.
Szabó et al. (2011) also measured v sin i = 65 ± 10 km s−1

for KOI-13.
We use the Kepler photometry, in which apparent transit depth

for KOI-13.01 is different in the Q0, Q1, and Q2 Kepler time
series. This interquarter variability (as well as the intraquarter
variability within Q1) derives from use of a too-small aperture
in Q1 that did not gather all of the flux from this saturated bright
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star. Therefore for our investigation we, like Szabó et al. (2011),
use just the Kepler Q2 public domain photometry, downloaded
from the Multimission Archive at STScI (MAST). We use the
Q2 short cadence data in our analysis.

In reducing the data first we eliminate data with imperfect
trend subtractions that were acquired near data gaps, leaving
111,858 one-minute measurements in the short cadence time
series. Then we clip out the points whose flux varies by more
than 5σ away from the six surrounding points—this eliminates
176 bad measurements. With no evidence of transit timing
variations or other transit-to-transit variability, we then fold the
data using the Borucki et al. (2011) period of 1.763589 days.
We crop the time series around the transit itself so as not to
consider the interesting effects in the lightcurve other than the
transit (i.e., Shporer et al. 2011b). In order to speed computation
time in fitting, we bin the data into 60 s bins, typically coadding
45 points bin−1 and leaving 254 points in the timeseries with
characteristic precision of 28 ppm.

Finally, we subtract off 45% of the median flux in order
to compensate for light from KOI-13 ’s binary companion
polluting the photometry (following Szabó et al. 2011).

3. MODEL

We generate model lightcurves using the algorithm first de-
scribed in Barnes & Fortney (2003), suitably modified for
gravity-darkened rotating stars by Barnes (2009). It has four
different methods to calculate transit fluxes. In order of in-
creasing accuracy and required computation time, they are: an-
alytical (after Mandel & Agol 2002, with gravity-darkening
modifications), image-pixel-based cartesian, radial one-
dimensional numerical integration (which we call “polar”), and
radial/azimuthal two-dimensional numerical integration (which
we call “full polar”).

For this work we also added the following features to the
code.

1. Fit for ψ , λ. We added the ability to fit for the stellar obliq-
uity, ψ , and for the longitude of the ascending node of the
planet’s orbit, ω. In this paper, we express ω in terms of
λ, the sky-projected spin–orbit angle, in order to provide
comparability with existing measurements of other tran-
sits from the Rossiter–McLaughlin effect (e.g., Perryman
2011, p. 128). Hence, we define λ to be the longitude of the
ascending node as measured counterclockwise from the as-
cending node of the star’s rotational equator. Given the
Szabó et al. (2011) measurement of stellar v sin i (which
is v cos ψ using our parameters), we therefore couple the
stellar rotation rate Ω∗ to the stellar obliquity such that:

Ω∗ = (v sin i)measured

R∗ cos ψ
. (1)

2. Time integration. When fitting data, for each model pho-
tometric data point we numerically integrate the flux for
±t/2 around the central time for the point, where t is that
point’s integration time. This has little effect on the short
cadence data, but greatly improves the accuracy of fits using
the 30 minute effective integration time for Kepler’s long
cadence data (Kipping 2010).

3. Bandpass. We modified our algorithm to integrate flux
numerically across the published Kepler response func-
tion.6 Wavelength effects are incorporated entirely into

6 http://keplergo.arc.nasa.gov/CalibrationResponse.shtml

limb-darkening parameters for non-rotating stars. But fast-
rotators’ temperature heterogeneity introduces variations in
transit lightcurve shape as a function of wavelength (Barnes
2009). In practice, for KOI-13, on which we fix the polar
temperature to be 8848 K (the value from the KIC), the
effects of the bandpass are nearly indistinguishable from a
monochromatic model at 0.5934 μm.

4. Fit for M∗. Transit lightcurves for non-rotating stars can
constrain only the stellar density, ρ∗ = 3M∗/4πR3

∗ . They
cannot determine the radius R∗ and mass M∗ individually
because, as can be derived from Kepler’s law, M∗/R3

∗ =
1/GT 3

durn, where G is the universal gravitational constant,
Tdur is the transit duration, and n is the planet’s orbital
mean motion (which is set by the orbital period). Since
G, Tdur, and n are all constant, there are no independent
constraints on M∗ or R∗ individually. For a fast-rotating
star, however, the intensity of the gravity darkening effect
depends on the local effective gravity. For instance, the
ratio of the equatorial stellar effective temperature Teq to
the polar temperature Tpole is

T 4
eq

T 4
pole

= R2
p

R2∗

(
1 − Ω2R3

eq

GM∗

)
. (2)

The (R3
eq/M∗) term provides no new constraints, of course.

But Ω depends only on R∗, and not on M∗ ((Rp/R∗) is
also a function of Ω—see Seager & Hui 2002 for how they
relate in a point-core model relevant for stellar moments
of inertia). So, gravity darkening can be used to break the
stellar density degeneracy.

In practice, however, this is a weak constraint. A stellar
mass of M∗ = 0.001 M� can be immediately (if unhelp-
fully) ruled out for KOI-13 because even with zero obliq-
uity (ψ = 0◦) it would need to be rotating faster than its
breakup speed to achieve v sin i = 65 km s−1. Conversely,
an M∗ = 100 M� star would need to rotate with a suffi-
ciently long period Prot∗ = 2π/Ω that its gravity darkening
would be negligible. We can derive lightcurve constraints on
M∗ then because low-mass stars have exaggerated gravity
darkening, and high-mass stars have muted gravity dark-
ening. Either can then fail to fit the real lightcurve if the
gravity darkening differs sufficiently from that of the real
star. Highly asymmetric lightcurves better constrain M∗ on
the high end, while more nearly symmetric lightcurves like
that for KOI-13.01 constrain the low-mass end more effec-
tively.

Lacking empirical constraints, we fix the gravity-darkening
parameter β when we fit the lightcurves. We use two different
assumptions for the value of β: the theoretical value from von
Zeipel (1924) of β = 0.25 and the experimental value of
β = 0.19 from Monnier et al. (2007). As expected, higher values
of β lead to more intense gravity darkening holding all other
parameters equal. The ultimate effect on the transit lightcurve of
changing β, therefore, is roughly similar to that of varying M∗
in that both primarily affect the intensity of gravity darkening.
We found, however, that the best-fit values varied less than 1σ
when using β = 0.19 rather than β = 0.25. We therefore use the
theoretical value of β = 0.25 in our reported fits. More precise
photometry and a better determination of the star’s mass could
therefore help to constrain β empirically in the future.

We fit the model described above to the data using the
Leavenberg–Marquardt algorithm described in Press et al.
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Table 1
Best-fit Transit Parameters for the KOI-13.01 System

Parameter Best-fit Values

M∗ = 1.83 M� M∗ = 2.05 M�
χ2

reduced 1.409 1.419
R∗ 1.694 ± 0.013 R� 1.756 ± 0.014 R�
Rp 1.393 ± 0.015 RJup 1.445 ± 0.016 RJup
Rp
R∗ 0.084508 0.084513
i 85.◦9 ± 0.◦4 85.◦9 ± 0.◦4
b 0.31962 0.31598
c1 0.49 ± 0.03 0.48 ± 0.03
T0 4628032 ± 3 s 4628033 ± 3 s
λ 24◦ ± 4◦ 23◦ ± 4◦
ψ −45◦ ± 4◦ −48◦ ± 4◦
ϕ 54◦ ± 4◦ 56◦ ± 4◦
Prot∗ 22.5 hr 22.0 hr
f∗ 0.018 0.021

Notes. The time of inferior conjunction, T0, is measured in seconds after
BJD 2454900, after Borucki et al. (2011). There is a four-way degeneracy
for the transit geometry, i.e., the projected spin–orbit angle λ and the stellar
obliquity ϕ—see Figure 3. The stellar rotation period is denoted as Prot∗. The
stellar dynamical oblateness is denoted as f∗.

(2007) to efficiently zero in the best parameters. Lacking
appropriate analytical partial derivatives for most parameters
in the gravity-darkened case (though see also Pál 2008, for
analytical derivatives in the spherical star case), we calculate
numerical partial derivatives with respect to each parameter at
each point in each step.

To calculate the one-standard deviation (1σ ) errors on each
measurement, we follow a modified version of the set of steps
specified by Press et al. (2007, p. 815). Instead of using the
covariance matrix, we explicitly fit the data using a set of fixed
values for each parameter. We then identified the minimum
in χ2 as a function of each parameter. We assign the error
for that parameter based on how far from the minimum value
the best-fit χ2 increases by the appropriate amount given a 1σ
confidence level and our number of parameters of interest (8).
This Δχ2 = 9.304 in our case, since we held M∗ fixed when
fitting other parameters (see Section 4).

4. RESULT

We fit the Kepler Q2 short-cadence KOI-13.01 transit
lightcurve for nine different parameters:

1. the stellar radius, R∗;
2. the planetary radius, Rp;
3. the orbital inclination relative to the plane of the sky, i, also

expressed as the impact parameter, b;
4. a single limb-darkening parameter, c1, equal to the sum

of the two quadratic limb-darkening parameters such that
c1 = u1 + u2, after Brown et al. (2001);

5. the time of inferior conjunction, T0, which can be shifted
relative to the mid-transit time for oblate stars (Barnes
2009);

6. the out-of-transit star flux, F0;
7. the stellar mass, M∗;
8. the longitude of the planet’s ascending node, λ, relative to

that of the ascending node of the stellar equator; and
9. the stellar obliquity, ψ , measured as the tilt of the stellar

north rotational pole toward Earth relative to the plane of
the sky.
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Figure 2. This plot shows the transit lightcurve for KOI-13.01 in filled black
circles in the middle, with a best-fit line using gravity darkening (M∗ =
2.05 M�) in blue and one without gravity darkening in red. The size of the
data circles corresponds to their error (as reported in the MAST, adjusted for
binning) in the y-dimension (flux). We plot the residuals for the gravity-darkened
fit as blue dots in the bottom graph. The residuals for the non-gravity-darkened
fit are at top, as red dots.

(A color version of this figure is available in the online journal.)

We show the best-fit values along with their 1σ uncertainties in
Table 1. The fit itself along with the data is plotted in Figure 2.
We also show in Figure 2 the best-fit lightcurve without gravity
darkening, after Szabó et al. (2011), in order to draw attention to
the necessity of the present analysis. The no-gravity-darkening
fit fails to match the KOI-13.01 transit ingress and egress.
It also does not adequately model the transit bottom, which
for KOI-13.01 is darker in the first half of the transit than
it is in the second half. The gravity-darkened model fits all
of these characteristics—the ingress, egress, and asymmetric
transit bottom.

The best-fit value for stellar mass M∗ is highly uncertain due
to the weak dependence of gravity darkening on M∗ as discussed
in Section 3. Both the Borucki et al. (2011) and Szabó et al.
(2011) spectroscopic measurements of M∗, M∗ = 1.83 M� and
M∗ = 2.05 M� respectively, lie within 2σ of our measured value
of M∗ = 0.9 ± 0.6 M�. Our measurement clearly prefers lower
values for M∗. However, the best-fit value of M∗ = 0.9 M�
is clearly inconsistent with the star’s spectral type. Given the
uncertainty in our measurement, however, for the remainder of
the fitted parameters we show values for an assumed mass of
both M∗ = 1.83 M� (Borucki et al. 2011) and M∗ = 2.05 M�
(Szabó et al. 2011).

The reduced χ2 (χ2
reduced) values for each of those fits are

χ2
reduced = 1.409 (M∗ = 1.83 M�) and χ2

reduced = 1.419
(M∗ = 2.05 M�). We think that the χ2

reduced above 1.0 results
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Figure 3. Allowed geometries for the KOI-13.01 transit event. Best-fit values for an assumed M∗ = 2.05 M� are shown. We enhance the contrast of the stellar image
in order to make the heterogeneity of the disk more evidently visible. Note that due to the competing effects of limb darkening and gravity darkening, the stellar poles
are not the brightest part of the stellar disk. Gravity darkening does, however, displace the brightest part of the disk poleward from the center of the disk. “NP” and
“SP” stand for North Pole and South Pole, respectively.

(A color version of this figure is available in the online journal.)

from inter-transit variability in the Kepler photometer. Although
each individual data point from the Kepler Q2 data set has high-
precision, red noise on longer timescales leads to systematic
errors between transits. Hence, folding the transits introduced a
modest amount of additional noise over and above the precision
of the individual points.

We adjusted the formal 1σ error bars to account for the
final χ2

reduced of each fit. The errors that we indicate in Table 1
represent the formal errors of the fit. They do not include, for
instance, likely systematic errors from our assumptions of stellar
mass, Tpole, the binary flux fraction, and/or fixed v sin i.

Our measured value for the stellar radius that we derive from
the lightcurve fit, R∗ = 1.756 ± 0.014 R�, is substantially lower
than the spectroscopic value reported by Szabó et al. (2011).
Given a similar planet–star radius ratio, then, we also measure a
smaller radius for the transiting body, Rp = 1.445 ± 0.016 RJup.
This smaller radius for the transiter places it within the range
of possible planetary companions for relatively young, highly
irradiated planets (Fortney et al. 2007). According to Figure 5
from Fortney et al. (2007), both Mp = 1 MJ and Mp = 3 MJ

planets with 25 M⊕ cores could have radii of Rp = 1.44 RJup
with an age of 700 Myr as determined by Szabó et al. (2011).
This raises the possibility that KOI-13.01’s mass lies in the
planetary regime, not that of brown dwarfs as the higher Rp of
Szabó et al. (2011) suggested.

By fitting for both R∗ and our limb-darkening parameter c1,
we arrive at a more consistent measure of the planet’s orbit
inclination relative to the plane of the sky, i. Expressed as an
impact parameter b, our values near b = 0.32 are significantly
lower (i.e., the transit is more nearly central, and less close to
grazing) than the value determined by Szabó et al. (2011). The

discrepancy may lie in the assumption by Szabó et al. (2011)
of a spectroscopically determined stellar radius that was rather
higher than our best-fit value. Because the stellar oblateness, f∗,
affects ingress and egress times (similar to the way that planetary
oblateness does, see Barnes & Fortney 2003), our measured
impact parameter is more accurate than one that would result
from a fit without explicitly incorporating stellar oblateness.

Stellar oblateness f∗ also affects the measured time of in-
ferior conjunction, T0. For rapidly rotating, oblate stars, the
mid-transit time and the time of inferior conjunction can differ
(Barnes 2009), depending on the transit geometry. The mea-
sured times for the fit assuming M∗ = 1.83 M� (4628032 ± 3
s after BJD 2454900) and that while assuming M∗ = 2.05 M�
(4628033 ± 3 s after BJD 2454900) are slightly different be-
cause the intensity of the effect depends on the stellar oblate-
ness, which is different in the two fits (see below). Both values
are somewhat later than the mid-transit time reported in Borucki
et al. (2011), 4628014 ± 10 s. Since the values are within 2σ ,
however, the discrepancy could be due to the stellar oblateness,
but may also be statistical variation.

The transit geometry determinations represent the most im-
portant measurements that we describe in this paper. Our
value for the sky-projected spin–orbit angle λ can directly
be compared to measurements of λ made in other transit-
ing systems from the Rossiter–McLaughlin effect. Unlike
Rossiter–McLaughlin measurements, however, we are also
able to determine the stellar obliquity, ψ , which we define as
the amount by which the star’s north pole is tipped out of the
plane of the sky toward the observer.

We cannot determine λ and ψ uniquely, though. We determine
four allowed transit geometries, as diagrammed in Figure 3. For
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the M∗ = 2.05 M� case, those are (clockwise from lower left):
(1) λ = 24◦, ψ = −48◦, the prograde case with north pole
tipped away from the observer; (2) λ = −24◦, ψ = 48◦, the
prograde case with the north pole tipped toward the observer;
(3) λ = −156◦, ψ = 48◦, the retrograde case with the north
pole tipped toward the observer; and (4) λ = 156◦, ψ = −48◦,
the retrograde case with the north pole tipped away from the
observer.

The combination of λ and ψ , along with the planet’s orbit
inclination i, allows us to calculate the complete relative
angle between the stellar rotation pole and the planetary orbit
normal—the spin–orbit alignment, ϕ—using Winn et al. (2007),
Equation (7). With our angle definitions, this equation becomes

cos ϕ = sin ψ cos i + cos ψ sin i cos λ. (3)

We measure ϕ = 54◦ ±4◦ for M∗ = 1.83 M� and ϕ = 56◦ ±4◦
for M∗ = 2.05 M�. Hence the orbiting body, KOI-13.01, is far
from spin–orbit alignment. While the projected alignment λ (as
would be measured using the Rossiter–McLaughlin effect) alone
reveals a significant deviation from alignment, the full extent
of the misalignment manifests from the large stellar obliquity
ψ which would not be measured by the Rossiter–McLaughlin
effect (i.e., Fabrycky & Winn 2009).

In actuality, given the orbital geometry degeneracies de-
scribed by Figure 3, ϕ also has another solution—one where
the planet orbits retrograde. In that case, ϕ = 126◦ ± 4◦ for
M∗ = 1.83 M� and ϕ = 124◦ ± 4◦ for M∗ = 2.05 M�. We
offer a possibility for resolving the prograde/retrograde degen-
eracy photometrically in Section 5.

5. DISCUSSION

5.1. Implications

Our determination of a high spin–orbit misalignment for
KOI-13.01, ∼55◦ rather than the solar system’s more typical
�6◦, drives us to pose the question of how the spin–orbit
misalignment came to be. Assuming that KOI-13.01 formed like
a solar system planet, in a planar disk orbiting the protostellar
KOI-13, there are two ways to have developed a spin–orbit
misalignment: either the stellar spin axis changed, or the planet’s
orbit did (or both). In addition to explaining the spin–orbit
misalignment of KOI-13.01, any explanation for its formation
and evolution must also explain KOI-13.01’s apparently circular
orbit, as established by the presence of a properly timed
secondary eclipse (Szabó et al. 2011).

Bate et al. (2010) suggest a mechanism by which to alter
the star’s rotation axis, moving it away from the normal to
the protoplanetary disk. This mechanism could drive spin–orbit
misalignment and allows for KOI-13.01 to end up on a circular
orbit.

Two prominent ways to alter the planet’s orbit are by
planet–planet scattering and the Kozai mechanism. If a
planet–planet scattering event occurred early enough in the
planet formation process, then sufficient debris might have re-
mained to circularize the orbit before the disk dissipated.

A Kozai-driven source for spin–orbit misalignment, like that
for HD 80606b (Wu & Murray 2003; Winn et al. 2009a), is
appealing because of the presence of KOI-13 ’s binary com-
panion. However, this mechanism requires that the planet’s or-
bital precession due to the binary companion be more rapid
than that induced by the planet’s parent star alone. Wu &
Murray (2003) suggest that HD80606b’s Kozai variations

thus ended when its orbital semimajor axis dropped, reduc-
ing Kozai’s effectiveness while increasing the effects from its
parent star.

For this mechanism to be viable for the evolution of
KOI-13.01, its orbit would have had to have been circularized
from a presumed prior highly eccentric Kozai-derived orbit.
Given KOI-13 ’s young 700 Myr age, though, tidal circulariza-
tion would seem difficult. The conventional tidal circularization
timescale τc = e

de/dt
(Trilling 2000) for KOI-13.01 in its present

state is τc = ∼8 Myr. However in a presumed former state like
that of HD80606b presently, with a semimajor axis of 0.5 AU,
the circularization timescale is τc = 200 trillion years using the
value for Mp from Shporer et al. (2011b). Hence, we think that
the Kozai mechanism is likely not responsible for the spin–orbit
misalignment of KOI-13.01, since the end state of Kozai migra-
tion would be a highly eccentric orbit that could not have been
circularized in the star’s lifetime. A more complete numerical
study of the orbital circularization of KOI-13.01, tracking the
coupled evolution of both eccentricity and semimajor axis fol-
lowing Jackson et al. (2008), might shed additional light on the
issue.

5.2. Future Work

The present work used just the public Q2 short-cadence
Kepler data for KOI-13. Presuming that Kepler continues to
observe KOI-13 at short cadence, the ultimate coadded pho-
tometric precision should continue to improve. The resulting
higher signal-to-noise ratio will allow more precise determina-
tions of all of the transit parameters in Table 1. As the precise
shape of the asymmetry at the bottom of the lightcurve becomes
clearer, the purely photometric determination of the star’s mass
M∗ should approve commensurately.

Another effect that will become important as precision
improves is the photometric Rossiter–McLaughlin effect
(Shporer et al. 2011a; Groot 2011)—the photometric analog
of the Rossiter–McLaughlin effect. This effect arises due to the
rotation of the star combined with the beaming effect. During
transit the planet covers up varying parts of the star, with dif-
ferent apparent radial velocities. The different radial velocities
cause photons emitted from different parts of the stellar surface
to be beamed by a different amount, resulting in an anomalous
photometric signal during transit. This combined effect has been
proposed to investigate the spin–orbit alignment of Kepler’s bi-
nary star population (Shporer et al. 2011a).

We show a calculation of the intensity of this effect for
KOI-13.01 in Figure 4. While its present amplitude of ∼4 ppm
renders it undetectable in the present Q2 Kepler data, fu-
ture improvements in precision as the mission progresses will
make the effect detectable and more easily discernible from
the gravity-darkening effects addressed in this paper. Most im-
portantly, the sign of the photometric Rossiter–McLaughlin ef-
fect would be flipped for retrograde-orbiting planets. Hence,
the photometric Rossiter–McLaughlin effect holds promise
in the future for a purely photometric resolution to the
prograde/retrograde degeneracy that we show in Figure 3.

Finally, Barnes (2009) showed that the lightcurve shape varies
for spin–orbit misaligned planets when viewed at differing
wavelengths. We show an illustration of this effect for KOI-
13.01 in Figure 5. Because the intensity of the difference
between the lightcurve in the Kepler bandpass and that at
different wavelengths depends on Tpole, such observations could
serve to place constraints on Tpole.

6



The Astrophysical Journal Supplement Series, 197:10 (8pp), 2011 November Barnes, Linscott, & Shporer

−3 −2 −1 0 1 2 3
−5

0

5

Time from mid eclipse [hour]

R
el

at
iv

e 
F

lu
x 

[p
pm

]

Figure 4. This plot shows the intensity of the photometric Rossiter–McLaughlin
effect for KOI-13.01 using our best-fit parameters for M∗ = 2.05 M� from
Table 1. While our algorithm presently does not account for this effect, it
could be incorporated in the future as additional Kepler data improve the
period-folded photometric precision. If it could be detected, the photometric
Rossiter–McLaughlin effect could be used to break the prograde/retrograde
degeneracy for the planet’s orbit depicted in Figure 3.

(A color version of this figure is available in the online journal.)
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Figure 5. Here we show the difference between various theoretical lightcurves,
conforming to the transit parameters from Table 1, acquired at various indicated
monochromatic wavelengths relative to that integrated across the Kepler
bandpass. At shorter wavelengths the KOI-13.01 transit lightcurve asymmetry
is increased, and at longer wavelengths the asymmetry is more muted. A single-
wavelength lightcurve at 0.5934 μm most closely replicates that of the lightcurve
under the entire Kepler bandpass for KOI-13. Observation of this transit, if
sufficiently precise, could constrain Tpole and the gravity-darkening parameter
β.

(A color version of this figure is available in the online journal.)

6. CONCLUSION

Barnes (2009) first discussed the prospect for spin–orbit mis-
aligned planets orbiting rapidly rotating stars having asymmet-
ric transit lightcurves owing to stellar gravity darkening (von
Zeipel 1924). Szabó et al. (2011) showed that planet candidate
KOI-13.01, first identified in Kepler data by Borucki et al.
(2011), has an asymmetric transit lightcurve. Szabó et al. (2011)

also made new critical measurements of KOI-13, including the
binary flux fraction and v sin i from stellar rotation.

Fitting the Q2 short cadence Kepler photometry for
KOI-13.01 with the Barnes (2009) model, we measured a pro-
jected spin–orbit alignment λ = 23◦ ± 4◦ and a stellar obliquity
(defined as the angle by which the stellar north pole is tilted out
of the plane of the sky toward the observer) of ψ = −48◦ ± 4◦.
While these measurements assume M∗ = 2.05 M� as deter-
mined by Szabó et al. (2011), other fits using different assumed
stellar masses show that the overall spin–orbit misalignment de-
rived for the star, ϕ = 56◦ ± 4◦, is not substantially affected by
plausible stellar mass variations. The photometric determination
also allows for a retrograde orbit with ϕ = 124◦ ± 4◦. Our mea-
surement of ϕ is the first spin–orbit determination to come from
gravity darkening. It is one of just a handful of observations of
any kind to determine the complete spin–orbit misalignment of a
transiting planetary-class body, not just its projected spin–orbit
alignment λ (Winn et al. 2007; Sanchis-Ojeda & Winn 2011;
Nutzman et al. 2011).

The spin–orbit misalignment of KOI-13.01 follows the trend
that planets around more massive stars are more likely to
be spin–orbit misaligned (Winn et al. 2010a). Our KOI-
13.01 measurement together with the spin–orbit misaligned
WASP-33b around a M∗ = 1.5 M� star (Collier Cameron
et al. 2010) extends the Winn et al. (2010a) to yet-higher stellar
masses.

We also measure the other critical transit parameters for the
KOI-13.01 system. We determined R∗ = 1.756 ± 0.014 R�,
Rp = 1.445 ± 0.016 RJup, i = 85.◦9 ± 0.◦4, b = 0.31598, and
a single limb-darkening parameter of c1 = 0.48 ± 0.03. Our
photometrically determined stellar and planetary radii are much
lower than those of Szabó et al. (2011) who used a spectroscopi-
cally derived star radius of 2.44 R�. Our lower estimated radius
places KOI-13.01 in the regime where interior models allow for
highly irradiated planetary-mass objects (Fortney et al. 2007).

We also take advantage of the dependence of gravity darken-
ing on the stellar surface gravity to directly measure M∗ from
the Kepler transit lightcurve. Transit lightcurves for spherical
stars can only constrain the stellar density ρ∗ and do not pro-
vide any absolute length scale with which to constrain M∗.
Smaller stars would need to rotate faster to provide the measured
v sin i = 65 km s−1, and thus they drive more intense curvature
at the bottom of the lightcurves of transiting objects. Conversely,
more massive stars have correspondingly lower gravity darken-
ing, and less lightcurve asymmetry. The effect is weak enough
that our highly uncertain measurement of M∗ = 0.9 ± 0.6 M�
cannot differentiate between the Borucki et al. (2011) and Szabó
et al. (2011) spectroscopic measurements of M∗ = 1.83 M�
and M∗ = 2.05 M� respectively. While it is consistent with
(or within 2σ of) either measurement, and inconsistent with the
measured spectral type (A), we do weakly prefer lower values
of M∗. Future observations, if more precise, can help to more
tightly constrain this first-ever measurement of M∗ from gravity
darkening.

Additional Kepler photometry may also show evidence for
the photometric Rossiter–McLaughlin effect (Shporer et al.
2011a; Groot 2011) in the KOI-13.01 transit lightcurve. This
sign of this effect, if it can be measured, would resolve the
degeneracy between prograde and retrograde planetary orbits
using photometry alone.

We have not determined the cause of KOI-13.01’s spin–orbit
misalignment. However, we note that the Kozai mechanism,
implicated for the evolution of HD80606b (Wu & Murray 2003),
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may be inconsistent with KOI-13.01’s circular orbit according
to a simple analysis, despite the presence of a similar-mass
binary companion to KOI-13. A more sophisticated study of
the effectivity of the Kozai mechanism for KOI-13.01 can help
to resolve the origin of the spin–orbit misalignment. Stellar
spin drift and planet–planet scattering during formation remain
viable misalignment generation mechanisms.

The complex and interesting nature of the KOI-13.01
star–planet system make it an astrophysical laboratory for pho-
tometric transit effects. The exquisite photometric precision of
the Kepler photometer allows us to probe those effects for the
first time. The lessons that we learn here will then be applicable
to future transiting objects discovered by Kepler and others.
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