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ABSTRACT

We present a new model for Ellipsoidal Variations Induced by a Low-Mass Companion, the EVIL-MC model.
We employ several approximations appropriate for planetary systems to substantially increase the computational
efficiency of our model relative to more general ellipsoidal variation models and improve upon the accuracy of
simpler models. This new approach gives us a unique ability to rapidly and accurately determine planetary system
parameters. We use the EVIL-MC model to analyze Kepler Quarter 0-2 (Q0-2) observations of the HAT-P-7
system, an F-type star orbited by a ∼ Jupiter-mass companion. Our analysis corroborates previous estimates of the
planet–star mass ratio q = (1.10 ± 0.06) × 10−3, and we have revised the planet’s dayside brightness temperature
to 2680+10

−20 K. We also find a large difference between the day- and nightside planetary flux, with little nightside
emission. Preliminary dynamical+radiative modeling of the atmosphere indicates that this result is qualitatively
consistent with high altitude absorption of stellar heating. Similar analyses of Kepler and CoRoT photometry of
other planets using EVIL-MC will play a key role in providing constraints on the properties of many extrasolar
systems, especially given the limited resources for follow-up and characterization of these systems. However, as
we highlight, there are important degeneracies between the contributions from ellipsoidal variations and planetary
emission and reflection. Consequently, for many of the hottest and brightest Kepler and CoRoT planets, accurate
estimates of the planetary emission and reflection, diagnostic of atmospheric heat budgets, will require accurate
modeling of the photometric contribution from the stellar ellipsoidal variation.
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1. INTRODUCTION

The Kepler and CoRoT missions have begun a new chapter in
time-domain astronomy. Among other results, the phenomenal
photometric stabilities, long observational baselines, and high
duty cycles of these missions will provide a vast harvest of new
exoplanets. Already, the Kepler mission has found 25 planets
that have been confirmed and an additional 1235 planetary
candidates (Borucki et al. 2011). The stability of the Kepler and
CoRoT photometry also allows access to astrophysical signals
with amplitudes too small to have been detected previously.

Too small to have been observed before, the photometric
signal of tidal distortion of a star by a close-in planet can now be
measured using Kepler and CoRoT data. This signal is usually
referred to as an ellipsoidal variation since a tidally distorted
body takes an approximately ellipsoidal shape. Drake (2003)
and Loeb & Gaudi (2003) initially suggested that the Kepler
mission might observe ellipsoidal variations for many of its
targets, and the latter study estimated amplitudes as large as
100 parts per million (ppm) for very short-period hot Jupiters.

The amplitude of the ellipsoidal variation depends on several
key system parameters, including the ratio of the stellar radius
to the orbital semimajor axis a, the planet–star mass ratio q, and
the sine of the orbital inclination sin i. If a planet transits its
host star, the transit light curve allows accurate determination
of a and sin i. If ellipsoidal variations can also be measured for

6 Carnegie DTM Astronomy Fellow.

the system, the mass ratio itself can be estimated. Hence, with
an estimate of the stellar mass, ellipsoidal variations can help
confirm the planetary nature of a transiting companion (Shporer
et al. 2011).

Kepler and CoRoT observations can also provide constraints
on the planetary emission and reflection, which can elucidate
a planet’s atmospheric properties. However, in visible wave-
lengths monitored by the missions, the contrast between light
emitted from a hot close-in planet and a host star is much smaller
than it is in the infrared. Consequently, determination of a close-
in planet’s emitted and reflected flux requires accounting for the
stellar ellipsoidal variation.

Analysis of ellipsoidal variations and eclipses has a long his-
tory for close binary stars, where it provides a wealth of in-
formation regarding stellar masses, luminosities, and internal
structures, among other properties (Kopal 1959). The effects of
tides in such systems (tidal distortions, thermal perturbations,
etc.) can be dramatic, but generations of binary star astronomers
were hampered by limited, semianalytic models. The compu-
tational power required for highly accurate numerical models
was only developed in the last few decades (e.g., Wilson 1994).
However, for planetary systems, tidal effects are much smaller,
owing to the small planet–star mass ratio (q � 0.01), and so they
give rise to much smaller (and possibly less complex) ellipsoidal
variations. Consequently, a model for ellipsoidal variations in
planetary systems can be greatly simplified relative to more
general models appropriate for binary stars.
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In this paper, we present a new model for ellipsoidal variations
in planetary systems—the Ellipsoidal Variations Induced by
a Low-Mass Companion (EVIL-MC) model. We incorporate
many approximations appropriate for planetary systems, which
allow our model to be computationally efficient. Our model uses
an alternative approach to other recently applied or developed
models. Welsh et al. (2010) discovered ellipsoidal variations in
Kepler observations of the HAT-P-7 system and analyzed them
using the binary star ELC code (Orosz & Hauschildt 2000). That
code is state of the art but requires considerable computational
resources to model the very small planet-induced ellipsoidal
variation. Mazeh & Faigler (2010) proposed a semianalytic
model involving a Fourier expansion of photometric signals
induced by the presence of a planet, including the ellipsoidal
variation. Shporer et al. (2011) and Mazeh et al. (2012) applied
that model to photometric variations observed for the KOI-13.01
system. The simplicity of this model allows rapid analysis
of data, but the relationships between the Fourier coefficients
and the system parameters are not all accurately determined,
limiting the ability of this model to determine the parameters.
Specifically, in their analysis, Shporer et al. (2011) did not
report a planet–star mass ratio based on the ellipsoidal variation.
Determining that relationship requires a model that accounts in
detail for tidal effects.

For this paper, we tailor our model to Kepler observations
of the HAT-P-7 system and constrain the planet’s mass and
phase function, whence we derive constraints on the atmospheric
brightness temperatures. We also highlight the importance of
considering the ellipsoidal variations when modeling planetary
emission and reflection in visible wavelengths. In Section 2, we
describe our model, derive the relevant equations, and compare
our model to others. In Section 3, we describe the Kepler
observations of the HAT-P-7 system and how we conditioned the
data for analysis. In Section 4, we apply the EVIL-MC model
to these data. Finally, in Section 5, we discuss implications of
our results and future work.

2. MODEL DESCRIPTION

In this section, we first describe the approximations made in
our model and derive the relevant equations. Then, we compare
our model to others.

2.1. Model Approximations

To model tidal distortion of stars hosting close-in planets, we
make several approximations:

1. We treat the planet and star as point masses to determine
their gravitational fields, ignoring the contribution of the
asymmetric mass distributions arising from tidal distor-
tions, which is negligible for our purposes (Claret 2000).

2. We employ the equilibrium tide approximation for model-
ing the stellar shape, in which the stellar surface lies along
a gravitational isopotential (Wilson & Sofia 1976). We ne-
glect tidal dissipation or more complex hydrodynamic mo-
tions within the star that may be observable in some cases
(Pfahl et al. 2008).

3. We assume that the planet’s orbit is circular. Although the
orbits of many transiting planets are eccentric (notably HD
80606 b; Winn et al. 2009a), the majority are circular or
nearly so.

4. We assume that the planet–star mass ratio q is small and
that the host star rotates as a solid body with a centrifugal
acceleration that is small compared to the surface gravity.

As a consequence, the departure of the stellar shape from
sphericity due to tides and rotation is assumed small (tens
of ppm for the HAT-P-7 system or ∼10 km).

5. We neglect Doppler effects from the velocity of tidal
motions within the star. The rotational and tidal motions
of the stellar surface may contribute to the Doppler flux
variations (Arras et al. 2012) but are probably negligibly
small for broad-band Kepler observations.

We do not assume that the stellar rotation is synchronous
with the orbit or that the stellar obliquity is zero. Alignment and
synchronization of stellar rotation with the orbit is common
among close binary stars, likely as a result of large tidal
torques (Kopal 1959), but not for transiting planets. For the
majority of planet-hosting stars for which it can be determined,
the stellar rotation period is much longer than the planet’s
orbital period (Jackson et al. 2008). Also, observations of the
Rossiter–McLaughlin effect (Winn et al. 2010), detection of the
crossing of star spots by transiting planets (e.g., Deming et al.
2011), and contributions of gravity darkening to transit light
curves (e.g., Barnes et al. 2011), all show that many planets
have orbits that are strongly inclined relative to their host stars’
equators.

We also do not make the usual assumption in tidal modeling
that the orbital separation is much larger than the physical radius
of the star, i.e., we do not assume the star is an ellipsoid.
Typically, the potential of a body inducing tidal distortion (and
consequently the shape of the tidally distorted body) is expanded
in the ratio of the tidally distorted body’s radius to the orbital
separation a (Murray & Dermott 1999). For planets very close to
their host star—the planets for which ellipsoidal variation will be
the most pronounced—higher-order terms may contribute to the
distortion non-negligibly. For the HAT-P-7 system, a ∼ 4 (Pál
et al. 2008), so departure of the stellar shape from an ellipsoid
is significant. Pfahl et al. (2008) showed that assuming the star
is an ellipsoid may not be sufficiently accurate for very close-
in exoplanets, resulting in erroneous estimates of the system
parameters. We discuss this point more in Section 2.3.

Currently our model does not include occultation of either
the star (during transit) or the planet (during eclipse). In fitting
our model to data, we mask out these phases. A future version
of our model will include these phases, but an initial analysis
suggests that, for typical planetary systems, the tidal distortion
of the host star negligibly modifies the transit light curve. Thus,
standard light curve models (e.g., Mandel & Agol 2002) are
probably sufficiently accurate.

2.2. Model Equations

We use a coordinate system centered on the star, as illustrated
in Figure 1. (In our notation, a vector Q has magnitude Q
and is parallel to Q̂, a vector with unit length.) As measured
in this frame (and subject to the approximations above), the
gravitational potential on the stellar surface U is

U = GM�

R�

+
GMp(

A2 − 2R�A cos ψ + R2
�

)1/2 − GMp

A2
R� cos ψ

+
1

2
ω2

�R
2
� (1 − cos2 λ), (1)

where G is Newton’s gravitational constant, M� is the stellar
mass, R� is the distance from the stellar center to its photosphere
(which is not constant), Mp is the planet’s mass, A is the orbital
semimajor axis, ω� is the stellar rotation rate, cos ψ = R̂� · Â,
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Figure 1. Definition of model geometry. The large, light circle represents the
star, and the small, dark circle represents the planet. The coordinate system
(X, Y, Z) is centered on the star, Ẑ points toward the observer, X̂ points along
the orbital line of nodes, and Ŷ is in the plane of the sky and perpendicular to
X̂. R� points somewhere on the stellar surface, A points to the planet in its orbit
(a portion of which is illustrated), and ω� is the stellar rotation vector. R0 points
somewhere on a stellar surface at a right angle to both ω� and A. The relevant
angles are ψ , the angle between R� and A, and λ, the angle between R� and ω�.

and cos λ = R̂� · ω̂�. The stellar rotation axis is ω�, and the
planet’s position vector is A.

The first term in Equation (1) represents the star’s gravita-
tional potential and the second term the planet’s gravitational
potential. If the second term in Equation (1) were expanded as
a Taylor series in R�/A, the first-order term (proportional to
cos ψ) would correspond to the force constant throughout the
star that keeps it in orbit about the system barycenter. Since
this force is constant, it does not contribute to the tidal dis-
tortion, and so we include the third term in Equation (1) to
remove it. The fourth term in Equation (1) represents a potential
corresponding to the centrifugal acceleration due to the stellar
rotation.

At points on the stellar surface where R� ⊥ A and R� ⊥ ω�,
we take R� ≡ R0. To clarify this definition, consider the case
of a planet crossing the exact center of the disk of a star
with a rotation vector pointing exactly at the observer. At this
instant, Â ‖ ω̂� ‖ Ẑ, and R0 would be the usual stellar radius
that goes into determining the transit depth. In the general
case, the relationship between the transit depth and R0 is more
complicated. However, the tidal distortion has a negligible effect
on the transit light curve, so we can safely consider R0 as the
usual radius that goes into determining the transit depth.

We normalize U by (GM�/R0), giving Φ

Φ ≡ U

(
R0

GM�

)
= 1

R
+

q

(a2 − 2aR cos ψ + R2)1/2

− q

a2
R cos ψ +

1

2

ω2R2

a3
(1 + q)(1 − cos2 λ), (2)

where R = R�/R0, q = Mp/M�, a = A/R0, and ω = ω�/n,
with n as the orbital mean motion.

Normalized to R0, the stellar radius R = 1 + δ R, a function
of cos ψ and cos λ. Per our assumptions, the surface of the
star corresponds to an isopotential contour, i.e., Φ = const.

We take the constant to be the potential Φ0 at R0 (where
cos ψ = cos λ = 0):

Φ0 = 1 +
q

(a2 + 1)1/2
+

1

2

ω2

a3
(1 + q). (3)

The departure from sphericity δR is assumed small, and we can
expand Φ:

Φ = 1

1 + δR
+

q

(a2 − 2a(1 + δR) cos ψ + (1 + δR)2)1/2

− q

a2
(1 + δR) cos ψ +

1

2

ω2(1 + δR)2

a3
(1 + q)(1 − cos2 λ)

≈ (1 − δR) +
q

(a2 − 2a cos ψ + 1)1/2
− q

a2
cos ψ

+
1

2

ω2

a3
(1 − cos2 λ) (4)

and Φ0:

Φ0 ≈ 1 +
q

(a2 + 1)1/2
+

1

2

ω2

a3
. (5)

In Equations (4) and (5), we have dropped second-order terms.
We set Equation (4) equal to Equation (5) and solve for δR:

δR = q

(
[a2 − 2a cos ψ + 1]−1/2 − [a2 + 1]−1/2 − cos ψ

a2

)

− ω2

2a3
cos2 λ. (6)

Gravity darkening of the stellar surface also contributes to the
photometric variation. Briefly, the planet’s tidal gravity perturbs
the balance of forces (pressure, the star’s own gravity, radiation,
etc.) within the stellar atmosphere and results in a small (few
0.1 K) decrease in the effective temperature and brightness
at points on the stellar surface nearest the planet (von Zeipel
1924). Theoretical considerations motivate a parameterization
of the gravity darkening involving the surface gravity (Wilson
& Devinney 1971). The gravity vector on the stellar surface is
given by

g = −GM�

R2
�

R̂� +
GMp(A − R�)(

A2 − 2R�A cos ψ + R2
�

)3/2 − GMp

A3
A

+ ω2
�R�(R̂� − ω̂� cos λ). (7)

The last term in Equation (7), representing the centrifugal
acceleration, is usually written as −ω�×(ω�×R�). Using cross-
product identities, this expression can be rewritten as

R�(ω� · ω�) − ω�(ω� · R�) = ω2
�R�(R̂� − ω̂� cos λ).

We normalize g by (GM�/R
2
0), giving �:

� ≡ g
(

R2
0

GM�

)
= − 1

R2
R̂� +

q(aÂ − RR̂�)

(a2 − 2aR cos ψ + R2)3/2

− q

a2
Â + ω2 R

a3
(1 + q)(R̂� − ω̂� cos λ)

≈ −(1 − 2 δR)R̂� +
q(aÂ − R̂�)

(a2 − 2a cos ψ + 1)3/2
− q

a2
Â

+
ω2

a3
(R̂� − ω̂� cos λ)

≡ −R̂� + δ�, (8)
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where δ� represents all the gravitational accelerations other than
the zeroth-order stellar gravity. The magnitude of � is

Γ = (� · �)1/2 = ([−R̂� + δ�] · [−R̂� + δ�])1/2

≈ 1 − R̂� · δ�. (9)

Likewise, at R0, the gravity vector is Γ0 ≈ 1−R̂0 ·δ�0. Using
these expressions, the effective temperature at T on the stellar
surface is parameterized as

T = T�

(
Γ
Γ0

)β

� T�(1 + β[R̂0 · δ�0 − R� · δ�]), (10)

where T is the temperature at R� and β is the gravity dark-
ening exponent. T� is the effective temperature at R0. For our
analysis, we are only interested in the fractional variation in
the stellar brightness, and surface brightness variations are lin-
ear in the small difference in temperature between R0 and any
other point on the surface. Moreover, tides raised by planets
have a negligible effect on the determination of the stellar ef-
fective temperature from observation, and the usual distinctions
between a star’s polar and mean effective temperatures (Wilson
1979) are unimportant here. Consequently, we take T� to be both
the mean effective temperature and the temperature at R0.

To model the limb darkening of the stellar disk, we calculate
the projection of the normalized gravity vector onto the line of
sight, μ = �̂ · Ẑ. We use this to determine the limb-darkening
profile I (μ) assuming a quadratic profile (Mandel & Agol 2002):

I (μ)/I (1) = 1 − γ1(1 − μ) − γ2(1 − μ)2, (11)

where γi are the limb-darkening coefficients. The model does
allow for other profiles, though.

Our model also includes the photometric effects of the stellar
reflex velocity vZ , referred to as “Doppler flux variations” in
Loeb & Gaudi (2003). These variations come in at the first
order in the ratio of vZ to the speed of light and include
several effects convolved together: (1) transformation of the
energy–momentum four-vector from the frame comoving with
the star to the observer’s frame (Equation (4.93) from Rybicki
& Lightman 1979), (2) reduction in the apparent size of the
star as it recedes from the observer (Equation (4.95) from
Rybicki & Lightman 1979), (3) increased travel time for the
stellar photons as the star recedes from the observer (see
discussion point 2 above Equation (4.97) in Rybicki & Lightman
1979), and (4) Doppler shifting of the stellar flux measured
within the observational bandpass. Together, effects (1)–(3)
increase the apparent stellar flux as the star approaches the
observer. The peak in emission for HAT-P-7 occurs blueward
of the Kepler bandpass, so the accompanying blueshift of
the stellar flux (effect 4) reduces the apparent flux. However,
taken altogether, the Doppler flux variations cause HAT-P-7 to
brighten as it approaches and darken as it recedes.

To first order in q, the star’s line-of-sight velocity is

vZ = − (q sin i)nA sin(2πφ) = −
(

2πGM�

P

)1/3

× (q sin i) sin(2πφ) = −KZ sin(2πφ), (12)

where A is the orbital semimajor axis (not normalized to R0), φ
is the orbital phase (= 0 at mid-transit), P is the orbital period,
and KZ is the amplitude of the projected reflex velocity of the
star. (Note that we have chosen the opposite sign convention

Figure 2. Illustration of the phases of ellipsoidal variation. The y-axis is in
arbitrary units, and the x-axis is orbital phase. The planet–star mass ratio is
exaggerated for illustrative purposes. Phases 1 (φ = −0.25) and 3 (φ = 0.25)
show the planet at quadrature, phase 2 (φ = 0) shows the planet during transit
(the photometric signature of which is not included), and phase 4 (φ = 0.75)
shows the planetary eclipse.

from Loeb & Gaudi 2003: positive vZ corresponds to increasing
radial distance.)

For our model, we tile the stellar surface in lat/long. To first
order in δR, each tile’s projected area ΔAp is

ΔAp = (1 + 2δR) μ · ΔΩ, (13)

where ΔΩ is the solid angle of each grid point.
For a given orbital phase φ, we calculate δR, δΓ, and

T at each grid point on the stellar hemisphere visible to
the observer (Z � 0), along with R̂0 · δ�0. To include the
Doppler flux variation, we assume each point on the star
is a blackbody—Loeb & Gaudi (2003) showed that depar-
ture from blackbody emission changes the photometric sig-
nature of the ellipsoidal variation by only a few percent. We
use Equation (2) from Loeb & Gaudi (2003) to calculate the
monochromatic flux throughout the Kepler observational band-
pass (http://keplergo.arc.nasa.gov/CalibrationResponse.shtml)
and convolve the flux with the Kepler response function. (Note
that the Kepler response function is given in wavelength space,
so we had to convert it to frequency space to use the results from
Loeb & Gaudi 2003.) Using the emission calculated for each
point on the stellar surface, we multiply each point’s flux by
the appropriate limb-darkening profile value (I (μ)/I (1)) and
sum the contributions from all grid points. Finally, we move
to the next point in the orbit and perform the calculation again.
Figure 2 illustrates schematically the appearance of the distorted
star and the resulting photometric variations.

Because our model is linearized in small quantities, it is
computationally more efficient for planet–star systems than
more general models, particularly those designed for binary stars
(e.g., Orosz & Hauschildt 2000). Where more general models
require a few hundred thousand grid elements to accurately
model the ellipsoidal variation (e.g., Welsh et al. 2010), our
model requires only a few hundred for convergence to better
than 0.01 ppm. To check the accuracy of our approximations,
we compared the values for all calculated physical quantities
(radius, temperature, etc.) as determined by the linearized
equations and the exact equations. For the HAT-P-7 system,
all quantities converged to better than 10 parts per billion.

The ellipsoidal variation signal is convolved with the planet’s
reflection and emission in the Kepler data. Therefore, to fit the
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Kepler data, we also require a model for light emerging from a
planet. In visible wavelengths, the light emerging from a close-
in planet is likely dominated by reflection of stellar radiation,
which suggests the planetary phase function should be nearly
symmetric about φ = 0.5. Although it can be more complicated
(e.g., Cowan & Agol 2008), we take a simple sinusoidal phase
curve for the planet:

Fp = F0 − F1 cos(2πφ), (14)

where F0 is a constant term, F1 is the amplitude of the planet’s
reflected and emitted light, and both are ratioed to the stellar
emission at mid-eclipse (when the planet is occulted). The sum
F0+F1 can be directly estimated from the depth of the secondary
eclipse.

Close-in planets also suffer significant tidal distortion. This
distortion may increase the planet’s phase curve at quadrature
as a planet’s projected surface area is largest there, and this
effect may be observable, particularly in the IR (Cowan et al.
2012). However, we assume this effect is negligible in Kepler’s
bandpass. Future work should revisit this assumption.

The ellipsoidal variation depends on several key system pa-
rameters, although there is degeneracy between some parame-
ters (β and q, for example). Given sufficiently high-quality data,
the ellipsoidal variation can be used to determine at least seven
parameters: q, a, ω�, sin i, γi , KZ , and β. A fit to the planet’s
phase curve determines F0 and F1. We expect the planet’s phase
curve to oscillate with the orbital period and the ellipsoidal vari-
ation to oscillate with half the orbital period (twice an orbit).
While they have a period equal to the orbital period, the Doppler
flux variations are 90◦ out of phase with the planet’s phase func-
tion. Thus, in principle, analysis of Kepler observations should
be able to distinguish these different components (given that the
planet’s phase curve is symmetric about φ = 0.5).

There is no general expression relating the physical param-
eters to the amplitude of the ellipsoidal variation, but approxi-
mating the star’s shape as an ellipsoid, we can explicitly express
the ellipsoidal variation’s dependence on system parameters.
Then, the photometric oscillations can be expanded as a Fourier
series. Combining equations from Mazeh & Faigler (2010) and
Morris (1985) gives the following series for the combined el-
lipsoidal variation, Doppler flux variations, and planet’s phase
curve ΔF/F :

ΔF

F
= −Aellip cos(2 · 2πφ) + Abeam sin(2πφ) −Arefl cos(2πφ),

(15)
where Aellip = αellip(q sin2 i)a−3, Abeam = αbeam4(KZ/c), and
Arefl = pgeo(Rp/A)2. Here pgeo is the planet’s geometric albedo
and Rp is the planet’s radius. αellip depends on the gravity-
darkening and limb-darkening coefficients, and αbeam corrects
the amplitude of the Doppler flux variations for shifting of
flux into and out of the observational bandpass. Both αs are
of the order of unity (Mazeh & Faigler 2010), but more accurate
estimates are required to provide estimates of, for example, q.
Moreover, as discussed in Section 2.1, the above Fourier series
less accurately approximates the photometric oscillation for very
close-in planets (a → 1), as higher-order harmonics contribute
non-negligibly.

Although, in principle, ellipsoidal variations can constrain a,
i, and γi , we expect that transit observations (if a planet does
transit) will provide tighter constraints. Also, ellipsoidal vari-
ations are relatively insensitive to β, and so modeling based
on spectral characterization of a star may provide better esti-
mates (e.g., Claret & Bloemen 2011). On the other hand, when

ellipsoidal variations can constrain q and transit observations
sin i, the Doppler variation signal or radial velocity observa-
tions may provide independent constraints on M�. Consequent
to these considerations, in our analysis of the HAT-P-7 observa-
tions (Section 4), we do not fit for a, ω�, i, γi , or β and fix these
at values provided by other studies.

We performed several tests to verify that our model works
correctly. For example, in the next section, we compare our
model to the more general Wilson–Devinney (W-D) model
(Van Hamme & Wilson 2007) and find good agreement. We
also used the results from Shporer et al. (2011) to test our
model for Doppler flux variations (see Equation (12) and
preceding discussion). Shporer et al. (2011) analyzed Doppler
flux variations observed for the KOI-13 system and determined
their amplitude to be 9.32 ppm, corresponding to KZ =
954 m s−1 (see their Equation (1)). Our model indicates that
KZ = 973 m s−1 is required to produce that amplitude for that
system, within 2% of the result from Shporer et al. (2011).

2.3. Comparison to Other Models

In this section, we compare our model to previously devel-
oped models. We consider the sinusoidal model proposed by
Mazeh & Faigler (2010) and described by Equation (15). Given
the assumptions under which they are derived, we expect the si-
nusoidal model to be less accurate for a → 1 and the EVIL-MC
model to be less accurate as q → 1. We also consider the pub-
licly available W-D model (ftp://ftp.astro.ufl.edu/pub/wilson/),
which has a storied history and has been developed for a
wide variety of astrophysical circumstances (Van Hamme &
Wilson 2007). Comparison to other models would be helpful,
but the ELC model (Orosz & Hauschildt 2000) is not publicly
available. The JKTEBOP model (Southworth et al. 2004) is
available (http://www.astro.keele.ac.uk/jkt/codes/jktebop.html)
but approximates tidally distorted bodies as ellipsoids and so
probably would not provide a more accurate description of tidal
distortion than the sinusoidal model does.7

Although the W-D model is widely applicable for modeling
planet-induced ellipsoidal variations, its numerical precision
is limited to a few tens of ppm (R. E. Wilson 2012, private
communication). Consequently, in the comparison below, the
smallest q-value we consider is 0.05, which corresponds, for
example, to a 50 Jupiter mass body orbiting a solar-mass star.
For the range of relevant a-values, q-values more appropriate
to planets (q � 10−3) produce ellipsoidal variations below the
W-D model’s numerical precision. In any case, the range of q
available is sufficient for our purposes.

For the comparison, we fix several model parameters.
Neither the W-D nor the sinusoidal model allow quadratic
limb darkening, so we assume linear limb darkening for the
comparison, with a coefficient u = 0.551 (Claret & Bloemen
2011). (For EVIL-MC, this assumption is equivalent to γ1 =
0.551 and γ2 = 0.) We take the gravity-darkening coefficient
to be β = 0.071 (corresponding to g = 4β = 0.284 for W-D).
With these parameters, αellip = 0.15 (15 + u) (1 + g) / (3 − u) =
1.223. We do not include Doppler flux variations and
reflected/emitted light from the planet for this comparison. For
the sinusoidal model, this assumption requires Abeam = Arefl =
0. For the W-D model, we set the secondary’s luminosity (L2) to
zero. We also assume no stellar rotation. Unless specified below,
all other system parameters are fixed at the values in Table 2.

7 After this paper was accepted for publication, Dr. Jan Budaj made us aware
of another relevant model described in Budaj (2011).
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(a)

(b)

Figure 3. Ellipsoidal variations predicted by the Wilson–Devinney (W-D; black
lines), the EVIL-MC (blue), and the sinusoidal (Equation (15); red) models for
a range of q and a. The models here do not include Doppler flux variations,
reflected/emitted light from the secondary (planet), or the transits/eclipses.
(The transit phase occurs to the outside of the black, vertical lines.) The models
do include limb and gravity darkening. (a) Predictions for fixed a = 3 and q
equal to 0.05 (dash-triple-dot lines), 0.1, (dash-dot), 0.5 (dash), and 1 (solid).
(b) Predictions for fixed q = 0.05 and a equal to 2 (solid lines), 3 (dash), and 5
(dash-dot). The difference between the EVIL-MC and W-D models is 2.1% or
less of the total variation and is as good as the agreement can be, given limits on
the W-D model’s numerical precision. By contrast, the difference between the
sinusoidal and W-D models is usually greater than 10% of the total variation.

(A color version of this figure is available in the online journal.)

First, we compare results from the three models for a range
of q and a = 3, as illustrated in Figure 3(a). To determine the
overall normalization for the sinusoidal model, we added an
offset value to Equation (15) and used a Levenberg–Marquadt
(LM) scheme (Markwardt 2009)8 to find the value that provided
the best agreement between the sinusoidal and W-D models.

As illustrated in Figure 3(a), agreement between the W-D and
EVIL-MC models is better than 2.1% of the total ellipsoidal
variation for all q illustrated, even though the EVIL-MC model
is derived under the assumption of small q. For q = 0.05, the two
models agree to 1.1% of the ellipsoidal variation, corresponding
to a difference of about 40 ppm. This discrepancy is near the
numerical precision limit of the W-D model and so is as good as
the agreement can be. These results indicate that the EVIL-MC
model is sufficiently accurate to model tidal distortions even in
binary systems with stars of comparable mass. By contrast, the
sinusoidal model agrees with the W-D model to only about 10%
of the total variation.

8 We used Craig Markwardt’s mpfit.pro IDL routine, available at
http://www.physics.wisc.edu/∼craigm/idl/fitting.html.

Figure 4. Ratio of the q-value estimated using the sinusoidal model
(Equation (15)) and the actual q-value (shown along the x-axis) for a range
of q and a. The sinusoidal model always underestimates the actual mass ratio by
a few percent, and the estimate’s accuracy degrades for a → 1 as higher order
Fourier components contribute more.

Next, we compare results for a range of a and q = 0.05, as
illustrated in Figure 3(b). Agreement between the EVIL-MC
and W-D models is better than 1.5% of the total variation,
while agreement between the W-D and sinusoidal models is no
better than 8% and as bad as 20% (for a = 2). As expected,
the sinusoidal model is less accurate as a → 1 as higher
order Fourier components contribute more. Whether there exist
planets with a = 2 and the sinusoidal model can be applied
to them remains to be seen (tidal decay of their orbits would
probably be rapid—Levrard et al. 2009; Jackson et al. 2009),
but the Kepler mission has announced candidates with a ∼ 2.

We can ask how accurate are estimates of system parameters
from the sinusoidal model, particularly the mass ratio. Figure 4
illustrates the accuracy of the q-value estimated using the sinu-
soidal model. For that figure, we calculated ellipsoidal varia-
tions for a range of a- and q-values using the EVIL-MC model
(again, neglecting Doppler flux variations or reflected/emitted
light from the planet). Then, we used an LM scheme to de-
termine a best-fit Aellip (and offset value) for each modeled
ellipsoidal variation and estimated q from Aellip by using the
assumed values for all other system parameters (a, αellip, etc.).

Figure 4 shows the ratio of the q-value estimated in this way to
the actual value. The sinusoidal model typically underestimates
q by a few percent, and, as expected, the estimates become
less accurate for small a. Although estimates of q from, for
example, Kepler data are likely to be less accurate than a
few percent, estimates of q using the sinusoidal model may
be systematically smaller than the actual q-values. Depending
on how the modeling is done, inaccuracies in the estimation
of q may cause estimates of other system parameters to be
systematically inaccurate as well. In any case, we confirm that
the sinusoidal model should generally be sufficiently accurate
to distinguish planetary companions from low-mass stellar
companions.

3. OBSERVATIONS OF THE HAT-P-7 SYSTEM

The HAT-P-7 planetary system was discovered by the
HATNet survey and was the second planet discovered in the
Kepler field of view. The system is composed of an F-type
star (M� = 1.47 M� and R� = 1.84 R�) and a gas giant planet
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(Mp = 1.78 MJup and Rp = 1.36 RJup) in a 2.2 day circular orbit
(Pál et al. 2008). In the Kepler bandpass, the star has a magni-
tude Kp = 10.5, relatively bright among Kepler targets. Borucki
et al. (2009) analyzed the first 10 days of Kepler data (quarter
0, Q0), detected a secondary eclipse depth of 130 ± 11 ppm,
and estimated a dayside temperature of 2650 K. Christiansen
et al. (2010) analyzed observations of HAT-P-7 b’s secondary
eclipse from the EPOXI mission and put upper limits on its
depth at 0.055%. They also analyzed Spitzer secondary eclipses
taken throughout the IR and found brightness temperatures in
the different bandpasses from 2250 K to 3190 K.

Welsh et al. (2010) discovered ellipsoidal variations in the
Kepler Q1 data, with an amplitude of 37.3 ppm. They also
estimated that the planet’s phase curve has an amplitude of
31.9 ppm and day- and nightside temperatures of 2885 and
2570 K, respectively. The discrepancy between the Borucki et al.
(2009) result and the Welsh et al. (2010) result may arise from
the consideration of ellipsoidal variation in the latter analysis
and/or the inclusion of more data (Q1 data span 30 days, as
compared to Q0’s 10 days).

Winn et al. (2009b) conducted Rossiter–McLaughlin obser-
vations of HAT-P-7 and found the planet is in a near polar or even
retrograde orbit about its star, with an angle between the stellar
rotation and orbit normal vectors projected onto the sky plane
of 182.◦5 ± 9.◦4. They also pointed out that the unusually low-
projected rotational velocity of the star for its type and age sug-
gests we are observing the star nearly pole-on. (Note that even
for the estimated deprojected rotation velocity of ∼15 km s−1

from Winn et al. 2009b, HAT-P-7 is still a “slow-rotator” for the
purposes of our linearized model.)

For our analysis, we obtained the short-cadence (1 minute
observing cadence) Pre-Search Data Conditioned light curves
from the MAST archive (http://archive.stsci.edu/kepler/), and
we analyzed the Q0-2 data. (The other data publicly available at
the time of our analysis from Q3 exhibited more complex sys-
tematic trends, so we did not include them in our analysis.) We
first removed outlying photometric points that were explicitly
flagged in the data files as anomalous by the Kepler team. We
then binned the remaining data in 30 minute bins, calculated
each bin’s standard deviation, and threw out data points more
than 4 standard deviations from the mean in each bin. The Q2
data filtered in these ways are shown in Figure 5(a). These data
still clearly exhibit both long-term trends and correlated noise.

We attempted to remove these trends. First, for the Q0 data,
we masked out all the transits (five transits) and fit a fourth-
order polynomial to the remaining data. (Third- and fifth-order
polynomials gave equivalent results within uncertainties.) We
calculated the standard deviation σ of residuals between data
and the trend curve and dropped points that lay more than 4σ
from the trend curve. We refit a fourth-order polynomial to these
screened data and iterated this procedure until all 4σ outliers
were removed. Then, we divided the data (including transits) by
the final trend curve. We performed the same detrending for the
Q1 and Q2 data. Analyzing these three quarters together nearly
quadruples the number of orbits examined over the analysis of
Welsh et al. (2010) and significantly improves the accuracy of
the estimated system parameters.

After detrending the data, we phased and stacked them,
assuming an orbital period of 2.204733 days (Welsh et al.
2010). We then binned the data into 30 minute wide bins,
determined a median for each bin, and took 1.4826 × the median
absolute deviation (MAD) as the standard deviation for each
bin (Bevington 1969). We then threw out points in each bin

(a)

(b)

(c)

Figure 5. (a) Kepler observations of HAT-P-7 system from Q2 with outliers
filtered out (see the text). (b) Observations from Q0-2 phased together and binned
to 30 minute bins (Xs). Our best-fit model curve (solid line) is also shown, the
best-fit ellipsoidal variation is shown as a dashed curve, the planetary phase curve
as a dash-dotted line, and the Doppler flux variations (with KZ = 300 m s−1) as
the dash-triple-dot line. The planet’s eclipse is highlighted in gray and is not fit
by our model. Best-fit parameters are shown in Table 1. Our originally estimated
uncertainties (∼4 ppm) are rescaled from the initial values by 1.8, the square root
of the best-fit reduced χ2 = 3.25, to give uncertainties ∼8 ppm. (c) Residuals
between the best-fit model and the data are nearly normally distributed about 0.

more than 4σ from the median. We then took the median of
the remaining data in each bin. For the uncertainties, we took
1.4826 × MAD divided by the square root of the number of
points in each bin—such uncertainties were typically 4 ppm.
However, systematic trends or correlated noise still pervade the
data (Pont et al. 2006), producing scatter larger than 4 ppm.

To estimate the size of this scatter, we determined an initial
best-fit model using an LM algorithm (Markwardt 2009), which
gave a reduced χ2 = 3.25, indicating the scatter was indeed
underestimated. We rescaled the error bars by

√
3.25 = 1.8,

giving uncertainties ∼8 ppm.
Finally, we calculated the overall normalization of the data

by taking the mean of the data during the eclipse phase, when
only the star is contributing flux. (Estimated variation of the
system brightness during this phase is less than 0.1 ppm, and
so variations in these data are dominated by intrinsic scatter.)
We divided all the data through by this value (for Figure 5(b),
we subtracted 1.0 from the data). These are the final data we
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Table 1
Model Fit Parameters from Our Analysis

Parameter Value Value
(Var. and Fixed KZ/fixed D) (Var. KZ/Var. D)

q (1.10 ± 0.06) × 10−3 (0.99 ± 0.07) × 10−3

D 61 ± 3 ppm 65 ± 2 ppm
Tday 2680+10

−20 K 2700 ± 10 K
F1 30 ± 1 ppm 32 ± 1 ppm
F0 − F1 0 or 1 ppm 3 ± 3 ppm
KZ 300 ± 70 (or fixed at 213.5) m s−1 300 ± 70 m s−1

analyzed and are shown in Figure 5(b) (with the transit near
phase 0 and 1 masked out), along with our best model curve
(see below). The contributions from ellipsoidal variations, the
planetary phase curve, and Doppler flux variations are also
shown.

4. ANALYSIS

We conducted a suite of Markov Chain Monte Carlo (MCMC)
analyses, using Gibbs sampling (Ford 2005) to fit the model
parameters, q, KZ , F0, and F1 (Table 1). In some of the model
fitting, though, we also held KZ constant, and the sum F0 + F1
was constrained by the eclipse depth (see below). We held all
other parameters fixed for all modeling (Table 2).

The eclipse depth provides a constraint on the maximum
of the planetary phase curve D = F0 + F1. We estimated the
eclipse depth by fitting a straight line between the points on
either side of the eclipse. Then, we took the eclipse depth to
be the difference between that value and 1.0 (the normalized
value during eclipse), giving D = 61 ± 3 ppm. (The difference
between the actual maximum in the planetary phase curve and
the maximum estimated this way is considerably less than the
scatter in the data.) We conducted two sequences of MCMC
analyses: (1) with D held constant (best-fit parameters for which
are in the first column in Table 1) and (2) allowing D to float
but with a χ2-penalty for departures from 61 ppm (second
column). (For the latter analysis, KZ was allowed to float as
well.) Comparison of the two sequences below highlights the
degeneracy between constraints on the ellipsoidal variation and
the planetary phase curve, but we focus our discussion on the
analyses with D = const since they give a q-value consistent
with previous analyses.

In theory, the ellipsoidal variation signal depends on the
relative orientation of ω� and the orbit normal vector. However,
we tried different relative orientations and found the data cannot
distinguish between an ω� that points directly at the observer
(parallel to Ẑ; Figure 1) and any other orientation allowed by
other constraints (Winn et al. 2009b). Thus, we assumed the ω�

vector points directly at the observer in our modeling (ω�||Ẑ).
For the MCMC fitting, we used five Markov Chains, each

with 5 × 103 links, which we show below suffices for good
convergence of the model parameters. (We also conducted
MCMC analyses with 5×104 links which confirmed the shorter
chains had converged.) For each jump transition, we chose at
random either 1 or 2 parameters to vary. We discarded the
first 20% of each chain. Otherwise, the resulting distributions
of best-fit parameters might be skewed by our initial choice
of parameter values. For sampling the parameter space, we
took the Gaussian distribution suggested by Ford (2005) for
the candidate transition probability, with a width β for each
parameter such that the fraction of accepted transitions was
∼0.25. (See Equation (12) in Ford 2005.)

We also checked that our analysis technique can accurately
recover system parameters by generating several synthetic data
sets designed to mimic the raw Kepler data with ellipsoidal
variations, planetary emission/reflection, Doppler flux varia-
tions, and the same gaps in time and scatter. We consistently
recovered the assumed system parameters when they were re-
coverable (see discussion of KZ estimate below).

For the sequence of analyses with the eclipse depth D held
constant, Figure 6 illustrates the convergence of the mean for
each of the five chains. For each parameter, the distribution
from each chain provides a slightly different mean value, but
the differences between the various mean values are all smaller
than the smallest standard deviation for any one chain. For
example, in Figure 6(a), the largest difference in the final mean
q-value between different chains is 5.3×10−6, while the smallest
standard deviation from among all the chains is more than
10 times larger, indicating the chains have all converged within
uncertainties.

Figure 7 shows the distributions of best-fit parameters for
the two sequences of model fitting with constant D, one with
KZ variable, the other with KZ fixed at 213.5 m s−1 (Pál et al.
2008). The mean of each distribution is taken as the best-fit
value, and the standard deviation is the uncertainty. Our best-
fit q (1.10 ± 0.06 × 10−3) is smaller but consistent (within

Table 2
Fixed Model Parameters

Parameter Definition Value

R�/Rp Star–planet radius ratio 12.85a

a Ratio of orbital semimajor axis to stellar radius 4.15b

ω� Stellar rotation frequency (calculated from v sin i and R�) 4.73 ×10−7 s−1a

T� Stellar effective temp. 6350 Ka

[ Fe
H ] Stellar metallicity 0.26b

log(g) Stellar surface gravity 4.07 (cm s−2)b

i Orbital inclination 83.◦1a

P Orbital period 2.204733 daysa

(γ1, γ2) Quadratic profile limb-darkening coefficients (0.314709, 0.312125)c

β Gravity-darkening coefficient 0.0705696c

Notes.
a Welsh et al. (2010).
b Pál et al. (2008).
c Determined from interpolation among the values in Claret & Bloemen (2011).
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(a)

(b)

(c)

(d)

(e)

Figure 6. Mean values for each parameter from each of the five Markov Chains as a function of link number (after the first 20% of each chain was dropped). Each line
style represents a different chain. The left column ((a)–(c)) shows the chains for which KZ is taken as a free parameter, while the right column ((d) and (e)) shows the
chains for which KZ = 213.5 m s−1. The vertical lines in each panel aligned with x = 3500 represent the smallest standard deviation from among all the chains, and
the means for all chains converge to within those deviations.

2σ ) with that of Welsh et al. (2010; 1.190 × 10−3). Assuming
M� = 1.47 M�, our q-value corresponds to Mp = 1.62 MJup.

Pál et al. (2008) estimated KZ = 213.5 m s−1, but our best-
fit value is 300 ± 70 m s−1. This latter value corresponds to
Doppler flux variations of only about 4 ppm, below the intrinsic
scatter in the data. We conducted numerical tests to see whether
we could, indeed, have recovered a KZ = 213.5 m s−1 and
found that we could only recover KZ for scatter less than or
comparable to the Doppler signal. Welsh et al. (2010) estimated

KZ = 212 m s−1 by steering KZ toward 213.5 m s−1 via a
χ2-penalty for deviations (although in Figure 3 of that study,
the asymmetry that should result from the Doppler signal seems
absent). In any case, as illustrated in Figures 7(a) and (b), the
best-fit values for other parameters are insensitive to KZ .

As discussed above, our estimated eclipse depth for the planet
is 61 ± 3 ppm, as compared to the eclipse depth of 85.8 ppm
from Welsh et al. (2010). This discrepancy arises from our use
of more data than used in that previous study. A preliminary
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(a) (b)

(c)

Figure 7. Distributions of the model fit parameters resulting from our MCMC analysis, with KZ variable (solid) and fixed (dashed). (a) Mass ratio, q; for M� = 1.47 M�
(Pál et al. 2008), our best-fit q gives Mp = 1.62 MJup. (b) Amplitude of the planetary phase curve, F1; the sum F0 + F1, the emission from the planet’s dayside
hemisphere, is held fixed at the estimated eclipse depth, 61 ppm. With the best-fit F1 illustrated, F0 − F1, the emission from the planet’s nightside hemisphere, is
nearly 0. (c) Amplitude of the stellar reflex velocity, KZ ; even for KZ = 300 m s−1, the signal from the Doppler flux variations has an amplitude of only about 4 ppm,
twice as small as the intrinsic scatter in the data. Thus, the best-fit KZ is very sensitive to the scatter and has large uncertainties.

analysis of Q1 data alone yielded an eclipse depth similar to
that of Welsh et al. (2010). Assuming the planet’s dayside emits
as a uniform blackbody, our depth corresponds to a dayside
temperature of 2680+10

−20 K, which is almost 200 K smaller than
the average dayside temperature from Welsh et al. (2010). The
disagreement with the eclipse depth from Borucki et al. (2009)
probably arises for similar reasons. As a further confirmation of
our estimate, Mislis et al. (2012) conducted an analysis of some
of the same data as we and found a similar eclipse depth (see
their Figure 7).

For our analyses with fixed D, we found that the nightside
emission F0 − F1 � 0, as compared to the 22.1 ppm estimated
by Welsh et al. (2010). Partly, this disagreement is due to the
fact that we do not explicitly analyze the transit phase, while
Welsh et al. (2010) do, and partly, it is due to our choice of
planetary phase function: Welsh et al. (2010) chose a planetary
emission/reflection relationship that produces a shallower drop
off in planetary flux than our function as φ departs from 0.5.
Both estimates for the nightside emission are model-dependent,
though.

Figure 8 illustrates the results of the MCMC analysis in
which D was allowed to float. (Note: convergence of the model
parameters for this analysis required 5×104 links in each chain.)

Our MCMC analysis drives q to smaller values and D to larger
values than when D is held fixed. Unfortunately, because we
rescaled our uncertainties to force χ2 ∼ 1, we cannot use the
χ2 values from the different MCMC sequences to determine
whether letting D float provides a statistically better model fit.
However, the fact that the q-value for the sequence with fixed
D more closely matches previous constraints suggests that is
the more appropriate model. In any case, Table 1 shows the
planetary parameters corresponding to the best-fit values for
variable D.

We also conducted numerical experiments for which we
created synthetic data sets with the same best-fit parameters
produced by the previous MCMC analysis (Column 1 in
Table 1). We added Gaussian noise to these synthetic data sets,
with a scatter of 8 ppm. We applied the same MCMC analysis in
which we allowed D to float, and the analysis would often drive q
to smaller values and D to larger values than assumed, depending
on exactly where the noisy data points ended up. These results
highlight the degeneracy between the best-fit q and planetary
phase function and show that it can depend sensitively on the
scatter in the data.

The dependence of the derived q-value on the assumed
planetary phase function has been considered by Mislis et al.
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(a) (b)

(c) (d)

Figure 8. Distributions of the model fit parameters resulting from our MCMC analysis, with KZ variable. The eclipse depth D is also allowed to float but with
a χ2-penalty for departures from 61 ppm. (a) Mass ratio, q; the MCMC analysis drives q to smaller values when D is allowed to float, producing a best-fit
q = 0.99 ± 0.07 × 10−3. (b) Amplitude of the planetary phase curve, F1; this value also goes up as D increases, producing a best-fit F1 = 32 ± 1 ppm. (c) Amplitude
of the stellar reflex velocity, KZ ; this parameter is essentially unchanged and has a best-fit value KZ = 300 ± 70 m s−1. (d) Eclipse depth D; the MCMC routine drives
this parameter to larger values than our best estimate, producing a best-fit value D = 65 ± 2 ppm.

(2012). For any planetary phase function that is symmetric about
φ = 0.5, there will necessarily be some degeneracy between the
solution for the phase function and q. For example, a model fit
to light emerging from a planet–star system exhibiting ellip-
soidal variations can enhance the peaks near φ = 0.25 and
0.75 by increasing the baseline planetary flux (F0), subject
to constraints on the eclipse depth, or by increasing q. Addi-
tional constraints on the planetary emission from other phases
cannot completely remove this degeneracy. Additional degen-
eracies between, for example, the planetary emission and the
transit parameters should emerge from analysis of the transit
phase.

Even for D = const, this degeneracy persists. Figure 9
illustrates the degeneracy between q and F1 and shows the
values sampled by the MCMC routine (with variable KZ)
when D is held constant. Since D = F0 + F1 = const, an
increase in the signal from the system when the planet is near
quadrature can be attributed to either increased q or increased
F0/decreased F1. A similar degeneracy does not exist for KZ
since the Doppler flux variations are not symmetric about
φ = 0.5. Taken altogether, our results show that, while Kepler
and CoRoT data may provide important constraints on planetary
albedo and energy budget, constraining these properties requires
including ellipsoidal variations. The different contributions

Figure 9. Values for mass ratio q and the amplitude of the planetary phase
function F1 sampled during the MCMC analysis. The strong positive correlation
between these parameters arises because an increase in flux from a planet–star
system when the planet is near quadrature can be attributed to increasing
F0/reducing F1 (their sum is constrained) and reducing q or vice versa.

cannot be completely disentangled. Future work should consider
more completely the influence of alternative planetary phase
functions.
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5. DISCUSSION AND CONCLUSIONS

We have developed a new model for ellipsoidal variations
induced by close-in planets, the EVIL-MC model. EVIL-MC
employs several approximations suited for planet–star systems
and is thus computationally more efficient than other more
general models and more accurate than simpler, semianalytic
models. For example, the W-D model takes about 0.5 s to
run each of the examples in Section 2.3, while our EVIL-MC
model (in IDL) runs in less than 0.05 s. Also, after our HAT-P-7
data were detrended and binned, we performed the entire suite
of MCMC calculations (25,000 evaluations of the EVIL-MC
model) described in Section 4 in about 20 minutes. This increase
in efficiency makes our model well suited for analyzing the
mountain of Kepler and CoRoT data still pouring in.

The EVIL-MC model has some important limitations. It
is not designed for systems with a mass ratio q ∼ 1 since
tidal distortions are not small for those systems, although our
comparison to the more general W-D model shows agreement
at about 2% even for large q-values (Section 2.3).

The EVIL-MC model may not be sufficiently accurate for
rapidly rotating stars where the rotational oblateness is large.
Rotationally induced gravity darkening at the equators of such
stars may imprint a discernible signature on the transit light
curves of companion planets, analysis of which can reveal the
misalignment between a planet’s orbit and the stellar equator.
Such analyses have been conducted for the KOI-13.01 system
(Barnes et al. 2011; Szabó et al. 2011).

EVIL-MC also does not currently include the transit and
eclipse phases for a planetary system, and a future version
will also include these phases. However, a preliminary analysis
shows that tidal distortion has a negligible (<0.1 ppm) influence
on the transit light curves for typical planetary systems.

Accurate determination of planetary phase curves from
Kepler and CoRoT data requires consideration of the ellipsoidal
variations, and there can be degeneracies between the contri-
butions from the ellipsoidal variation and the planetary phase
curve. Planetary phase curves are diagnostic of atmospheric tem-
peratures and dynamics, and a complex story of coupled chem-
istry, dynamics, and radiation is emerging, motivated largely by
IR observations of planetary phase curves and eclipse depths
(see, e.g., Knutson et al. 2010). Results from the Kepler and
CoRoT missions will add to this picture and, when combined
with Spitzer observations, will give a much fuller picture of the
atmospheric energy budgets of close-in planets.

From our analysis, we can draw some tentative conclusions
regarding HAT-P-7 b’s atmosphere. Given its proximity to its
host star, the planet is probably tidally locked, and the same
side of the planet always faces the star (Jackson et al. 2008).
Consequently, atmospheric circulation is required to transport
stellar heating from the day to the night side. Our estimated day-
side emission 61 ppm corresponds to a brightness temperature
of 2680 K. Our estimated minimum for the planet’s nightside
emission F0 − F1 lies below the sensitivity of our analysis,
∼4 ppm, suggesting the nightside brightness temperature in the
Kepler band is less than 1970 K.

This result might indicate much of the stellar heating on
the day side is radiated to space before it can be transported
to the night side. This result is also qualitatively consistent
with models of the hottest close-in planets (Fortney et al.
2008) and with analyses that suggest HAT-P-7 b has an at-
mospheric thermal inversion (Christiansen et al. 2010), which
is often correlated with a high atmospheric temperature for

close-in planets (Knutson et al. 2010). However, determining the
precise implications of this result for the atmospheric circulation
requires detailed modeling. It is worth noting that the day–night
brightness temperature contrast inferred here (∼710 K) is sim-
ilar to that inferred for WASP-12 b (Cowan et al. 2012) but
greater than those of cooler hot Jupiters, including HD 189733b
(Knutson et al. 2007), HD 209458b (Cowan et al. 2007), and HD
149026b (Knutson et al. 2009; although the latter has an error bar
that does allow relatively large values). These measurements are
not all at the same wavelength, which complicates the interpre-
tation. An additional complication is that our eclipse depth may
also include contributions from atmospheric scattering of light
by clouds, although estimated optical albedos of hot Jupiters are
highly uncertain (e.g., Rowe et al. 2008; Cowan & Agol 2011).

To help place our results regarding HAT-P-7 b in context, we
ran some preliminary dynamical+radiative calculations using
the SPARC model (Showman et al. 2009). The HAT-P-7b model
atmospheres were constructed assuming a solar metallicity
atmosphere in thermochemical equilibrium for cases with and
without TiO, which can absorb stellar radiation high in the
atmosphere and produce a temperature inversion (Christiansen
et al. 2010).

For the model with TiO in the atmosphere, stellar heating is
deposited higher in the atmosphere, where the timescale for
radiation of stellar heating to space is relatively short, and
consequently, the model predicts a large day–night contrast:
a dayside emission of 74 ppm and a nightside emission of only
1 ppm. For the model without TiO, stellar heating is deposited
deeper in the atmosphere, where the radiative timescale is
relatively long, and so the model predicts a smaller day–night
contrast: a dayside emission of 52 ppm and nightside emission
of 9 ppm. Comparison with our observations suggests HAT-P-7
b’s real atmosphere might occupy a point in parameter space
somewhere between these models. Our results here suggest
there are still important, unanswered questions about HAT-P-7 b.
The planet is one of the hottest hot Jupiters known and orbits
one of the brightest Kepler targets, and so further study of
the planet may prove particularly useful for understanding hot
Jupiter atmospheres.

Kepler and CoRoT observations will provide numerous op-
portunities for similar phase curve analyses. The closer a planet
to its host star, the more stellar radiation it will receive, proba-
bly leading to greater reflection and/or thermal emission. The
tidal distortion and ellipsoidal variation of its host star could
also be larger. Accurate determination of phase curves for the
closest-in planets will therefore require inclusion of the stellar
ellipsoidal variation. Phase curve fitting without it may produce
erroneous results. By contrast, ellipsoidal variation of a star has
less influence on determination of planetary phase curves from
Spitzer observations because the planet–star contrast for most
extrasolar systems is much larger in the IR.

Ellipsoidal variation analysis may provide other key in-
formation about extrasolar systems. For example, Loeb &
Gaudi (2003) first suggested Doppler flux variations would
be an important source of variability for Kepler observations.
Equation (12) shows that Doppler variations (or radial velocity
observations) has a different dependence on the system parame-
ters than ellipsoidal variations. Potentially, transit observations
would give the orbital period P and orbital inclination sin i,
ellipsoidal variations would give the planet–star mass ratio q,
leaving only the stellar mass unknown in Equation (12).

Single planets close enough to their star to induce measur-
able ellipsoidal variations are likely to have negligible orbital
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eccentricities. However, if primordial eccentricities remain or
interactions with other planets keep eccentricities non-zero (and
the planet’s semimajor axis is not aligned along the line of
sight), the planet–star orbital separation will be different at
each quadrature. Consequently, the ellipsoidal variations at one
quadrature may exceed that at the opposite quadrature, and the
difference may help constrain the orbital orientation and eccen-
tricity (Mislis et al. 2012).

Moreover, given the number of planets likely to be discovered
by the Kepler and CoRoT missions, follow-up resources to
determine the system parameters will be limited, so the ability
to determine some of the parameters from mission photometry
alone will be a tremendous boon. Thus, ellipsoidal variation
analysis of Kepler and CoRoT systems promises to reveal a
unique wealth of information.

The authors gratefully acknowledge useful conversations
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Darin Ragozzine, William Welsh, Nick Cowan, Jan Budaj, and
Robert E. Wilson. Input from an anonymous referee also greatly
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