
Spherical Radiative Transfer in C++ (SRTC++): A Parallel Monte Carlo Radiative
Transfer Model for Titan

Jason W. Barnes1 , Shannon M. MacKenzie1, Eliot F. Young2, Laura E. Trouille3, Sèbastien Rodriguez4, Thomas Cornet4,
Brian K. Jackson5 , Máté Ádámkovics6, Christophe Sotin7, and Jason M. Soderblom8

1 Department of Physics; University of Idaho; Moscow, Idaho 83844-0903, USA; jwbarnes@uidaho.edu
2 Space Studies Department, Southwest Research Institute, Boulder, CO 80302, USA

3 Adler Planetarium, Chicago, IL 60605, USA
4 Institut de Physique du Globe de Paris (IPGP), CNRS-UMR 7154, Université Paris-Diderot, USPC, Paris, France

5 Department of Physics, Boise State University, Boise, Idaho 83725-1570, USA
6 Physics and Astronomy Department, Clemson University, Clemson, South Carolina 29634, USA

7 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
8 Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 2017 October 27; revised 2018 April 24; accepted 2018 May 3; published 2018 June 4

Abstract

We present a new computer program, SRTC++, to solve spatial problems associated with explorations of Saturn’s
moon Titan. The program implements a three-dimensional structure well-suited to addressing shortcomings arising
from plane-parallel radiative transfer approaches. SRTC++ʼs design uses parallel processing in an object-oriented,
compiled computer language (C++) leading to a flexible and fast architecture. We validate SRTC++ using
analytical results, semianalytical radiative transfer expressions, and an existing Titan plane-parallel model. SRTC+
+ complements existing approaches, addressing spatial problems like near-limb and near-terminator geometries,
non-Lambertian surface phase functions (including specular reflections), and surface albedo nonuniformity.

Key words: planets and satellites: individual (Titan) – radiative transfer

1. Introduction

Titan’s thick, extended, hazy atmosphere elicits complex
interactions of incoming photons with aerosols, gases, and the
surface. Scattering by haze aerosol particles smears visibility
of Titan’s surface, particularly at short wavelengths where
haze particles have large extinctions (Smith et al. 1981;
Richardson et al. 2004; Porco et al. 2005; Tomasko & West
2010; Maltagliati et al. 2015a). Gaseous methane, nitrogen,
and carbon monoxide in Titan’s atmosphere absorb light at
most near-infrared wavelengths, permitting transmission from
the surface only within distinct spectral windows (Griffith
1993; Smith et al. 1996; Barnes et al. 2007; Vixie et al. 2012).
And Titan’s heterogeneous surface (Griffith 1993; Barnes
et al. 2005) exhibits spectral units with varying reflectance
phase functions, including specular reflections off the smooth
liquid lakes and seas (Stephan et al. 2010; Soderblom et al.
2012; Barnes et al. 2013). We illustrate some of these effects
in Figure 1.

Given the complex geometry and processes involved,
inversion of reflectance spectra to independently ascertain
surface and atmospheric parameters has proven challenging.
Currently working models for Titan typically assume a plane-
parallel one-dimensional (1D) atmosphere (e.g., McKay et al.
1989; Rannou et al. 2003; Rodriguez et al. 2006; Griffith
et al. 2012a; Maltagliati et al. 2015b; but see also Xu et al.
2013, which uses a spherical-shell assumption instead of
plane-parallel). And they do so for good reasons. Quality 1D
algorithms exist and have been thoroughly tested, and 1D codes’
approximations allow for fast radiative transfer calculations, thus
enabling their practical use for spectral modeling (Young
et al. 2002; Hirtzig et al. 2013) and the inversion of surface
albedo (Coustenis et al. 1995; Griffith et al. 2012a; Solomonidou
et al. 2014; Maltagliati et al. 2015b; Solomonidou et al. 2016;
Ádámkovics et al. 2016).

Some subsets of Titan problems do not lend themselves well
to being solved using 1D plane-parallel codes, however. Titan’s
extended atmosphere leads to a dramatic falloff in the accuracy
of the 1D plane-parallel approximation beyond incidence
and emission angles of ∼60° (with significant deviations at
geometries as low as ∼35°–40° incidence for an extended
atmosphere like Titan’s). Hence, observations near Titan’s
limb, or near its poles, cannot be modeled using existing
algorithms without complex modifications. One-dimensional
codes by their nature do not model spatial problems like the
adjacency effect, simulations of spatial resolution capabilities,
indirect illumination beyond the terminator, and non-Lambertian
surface phase functions.
To solve this spatial class of Titan radiative transfer

problems, we have written a new radiative transfer computer
program. The new algorithm uses a Monte Carlo approach in
conjunction with fully spherical atmospheric geometry so that
it can be used at extreme geometries and to solve spatial
problems. Although the new code tracks photons in parallel, its
speed still leaves much to be desired relative to conventional
1D plane-parallel approaches (e.g., Griffith et al. 2012b;
Solomonidou et al. 2014). Hence, our new approach is
designed to complement, and not to supplant, the current
generation of radiative transfer solvers.
Although our work resembles existing astrophysical

Monte Carlo radiative transfer solvers, like Hyperion (Robi-
taille 2011), SUNRISE (Jonsson 2006), MC3D (Wolf 2003),
and SKIRT (Baes et al. 2003) in many aspects, our strengths lie
in our design based around planetary remote sensing problems.
Although our approach is general and could in principle be
adapted for other purposes, we assume a central spherical solid
body and allow for multiple observation viewpoints as might
be seen from spacecraft. Together, these design choices allow
both easier problem setup and more rapid and efficient
computation of the results.

The Astronomical Journal, 155:264 (12pp), 2018 June https://doi.org/10.3847/1538-3881/aac2db
© 2018. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-7755-3530
https://orcid.org/0000-0002-7755-3530
https://orcid.org/0000-0002-7755-3530
https://orcid.org/0000-0002-9495-9700
https://orcid.org/0000-0002-9495-9700
https://orcid.org/0000-0002-9495-9700
mailto:jwbarnes@uidaho.edu
https://doi.org/10.3847/1538-3881/aac2db
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/aac2db&domain=pdf&date_stamp=2018-06-04
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/aac2db&domain=pdf&date_stamp=2018-06-04

We call the new code SRTC++ for “Spherical Radiative
Transfer in C++”. We describe the nuts and bolts of the code
itself, including the treatment of atmospheric structure, the
generation of input photons, the photons’ traverse through that
atmosphere, and our detector implementation in Section 2. We
then validate our results by comparing to the results of plane-
parallel radiative transfer models in Section 3. Benchmarking
discussions proceed in Section 4. Finally, we conclude with
discussion of future application of SRTC++ in Section 5.

2. Computation

Spherical Radiative Transfer in C++ (SRTC++) is based on
an earlier algorithm, SRTC, which was written in Interactive
Data Language (IDL) by two of us (EFY and LET) but never
published. We make no assumptions about atmospheric
structure or scattering qualities, but rather virtually throw
photons toward the target and probabilistically calculate their
behavior. We first calculate where the photon experiences a
scattering event, which we determine randomly first in optical
depth space and later in physical space. At each of these
randomly determined scattering events, we update the detector
to record the visible response corresponding to the scatter.
Then we probabilistically calculate a new direction for the
photon post-scatter from the scattering phase function.

Because we directly simulate the experience actual photons
might have interacting with the target planet, the approach is
simple, straightforward, and broadly applicable. There are no
Markov Chains, no scattering order assumptions, no assump-
tions of homogeneity or of a plane-parallel atmosphere.
However, because it does not make any of these assumptions
that could speed it up, the algorithm is slow. We designed
SRTC++ to significantly improve on the original SRTC through
translation into a fast, compiled language (C++), and by
implementing SRTC++ in parallel from the ground up,
potentially to speedup computation by a factor of the number
of machine CPU cores.

2.1. Component Data Structures and Methods

Before diving in to the primary code execution loop, we first
describe the general setup requirements and class structures that
SRTC++ uses.

2.1.1. Atmosphere

In SRTC++, an atmosphere is a list of atmospheric layers.
The layers start with the lowest layer, a type of “atmospheric”

layer that corresponds to the surface. Atmospheric layers, or
atmolayers, know their own vertical depth, scale height, and
name, and contain pointers to the layers above and below them.
The last layer of atmosphere always points to the static “Space
()” layer. SRTC++ integrates the opacity through each separate
layer individually. The user can therefore decide to implement
multiple homogeneous layers with different properties or a
single giant layer with internally varying properties. Note that
the former may run faster for numerical integrations in cases
where properties exhibit discontinuities—numerical integration
typically slows down severely when integrating discontinuous
functions.
Each atmolayer contains a vector of atmospheric zones,

or atmozones. Atmozones know their haze scattering and
gas absorption normal optical depth properties (separately),
along with single-scattering albedo and scattering phase
function properties. A simple atmosphere would typically
contain just a single atmospheric zone, but this structure allows
for arbitrarily complex surface or atmospheric variations with
latitude, longitude, and altitude. In particular, albedos including
surface albedo can also be set with a raster image jpeg to allow
for intricate and complex structures (see Figure 2).

2.1.2. Photon Generation

SRTC++ starts with initial incident light from a photon
generator. The photon generator takes a photon
identification number (photon ID) from which it infers the
initial state of the photon. Photons have knowledge of their x, y,
z position, and their Vx, Vy, Vz direction along with their
amplitude9 (initially set to 1.0) and wavelength. Our simple
“square” photon generator returns a raster of photons in y, z
space all initially pointed in the −x direction and located
outside Titan’s atmosphere at x=+4200 km.
The photon generator is an abstract class, and therefore

one from which users can build as a basis for new photon
generators that work differently.
There are two essential aspects of the photon genera-

tor. (1) At no time are all of the photons stored in memory,
thereby reducing the program’s memory footprint and allowing
an arbitrarily large number of input photons not limited by
memory size. (2) Because each photon is produced from a

Figure 1. Five different color scheme renditions of a mosaic of Titan data from the VIMS instrument on Cassiniʼs T104 flyby, which occurred on 2014 August 21. In
panel (a), we show a color scheme designed to show surface spectral diversity (red=5 μm, green=2 μm, blue=1.3 μm) first used by Barnes et al. (2005). Panel
(b) shows a combination of short wavelength surface windows (red=1.58 μm, green=1.08 μm, blue=0.93 μm) after Barnes et al. (2009). The middle panel, (c),
shows a color scheme designed to bring out atmospheric features such that clouds are white, haze is pink, and surface is green (red=2 μm, green=2.7 μm,
blue=2.6 μm) from Griffith et al. (2005). Panel (d) renders a view using Titan’s double-peaked 2.7/2.8 micron window (red=2.8 mm , green=2.7 μm,
blue=2.0 μm). Panel (e) at right shows the surface color scheme developed by Soderblom et al. (2007) (red=2 μm, green=1.58 μm, blue=1.28 μm).

9 Of course actual, physical photons do not have varying amplitudes. Our
treatment of photons by referring to their “amplitude” is equivalent to what
other Monte Carlo models might call a “photon packet” and corresponds to the
aggregate behavior of a large number of photons and not to an actual single
individual photon.

2

The Astronomical Journal, 155:264 (12pp), 2018 June Barnes et al.

single initial photon ID number, each photon is entirely
independent of every other photon, not relying on them for any
previous knowledge of position or wavelength. Aspect (1)
allows for ambitious models with high photon counts and
therefore high signal-to-noise ratios (S/Ns), and aspect (2)
allows each photon to proceed in parallel disregarding when or
on what processor it is running.

The simplest built-in photon generator, photonge-
nerator_square, implements a regularly spaced raster of
photons with a given side length in kilometers, number of rows
and columns n, and list of w different wavelengths. Every
photon generator knows its size—the total number of
photons that it expects to generate (n2w). The primary loop then
starts a long integer iterator i at i=0 and runs through to the
photon generator size, passing i, the photon ID number,
to the generatephoton() method at the beginning of the
loop. This method then determines the wavelength to be the
entry in the input list corresponding to the integer value of i/n2.
Then, using the remainder r≡i %n2, the row number comes
from the integer value of r/n and the column from the remainder
r%n. From the row and column number, we determine the initial
y and z coordinate locations for the photon. The photons’ initial
directions are all the same: –x for photongenerator_
square (though the initial direction could be assigned
differently in an updated photon generator, to come from
a point source like the Sun for instance instead of being parallel).
The output of generatephoton() is an instance of the
photon class that knows its own three-dimensional (3D) vector
position, its direction, and its “amplitude” (a measure of what
fraction of the virtual photon has been previously absorbed—
which of course does not really happen for a single photon, so
our photon class might more accurately be thought of as a
bundle of photons).

This backwards approach certainly takes a few extra CPU
cycles than a forward calculation of y, z, and wavelength in
a triple loop. But it reduces memory accesses and storage and
allows threads to run independently and for photon ID numbers
to run unordered and randomly as assigned by the parallelization.

2.1.3. Detectors

In SRTC++, detectors are implemented as an abstract
class—hence, any different kind of detector could be created as

might be helpful to solve any particular future problem. To
start, we created a simple detector called colorCCD. A
colorCCD knows its position and the direction in which it is
pointed. It has a virtual two-dimensional (2D) CCD array with
multiple planes to allow for different wavelengths that are
calculated simultaneously.
Distinct from existing 1D codes, which typically have as

their output a spectrum that results from a particular
atmosphere and input geometry, colorCCD records images
(like those in Figure 2). Pixels in the image correspond to
different locations on the target planet (or off its limb) and
therefore to different local incidence, emission, and azimuthal
angles. Because the SRTC++ treatment is 3D, conditions in one
area may affect nearby pixels in the colorCCD.
SRTC++ takes a vector of detectors as input. It follows that it

can use the same radiative transfer calculation to update any
number of detectors during a single run. Figure 2, for instance,
was created in a single SRTC++ configuration that used 36
different detectors arrayed around Titan’s equator every 10°.
For testing purposes (see Section 3), we also introduce a

more complex detector: the elephant detector. It never
forgets photon histories. Rather than store the full history of a
billion photons, though, elephant detectors have separate
colorCCDs for each possible photon scatter path topology.
We denote each photon history using a “0” for surface scatters
and a “1” for atmospheric scatters. We end up with one
colorCCD for just surface scatters (__0) and one for just one
atmospheric scatter (__1). We store each scenario separately
for double scatters: surface then atmosphere(_01), atmosphere
then surface (_10), and photons that scatter twice off the
atmosphere (_11). Although elephant formally tracks
surface-then-surface (_00) scatters, too, in practice there
should not ever be any of these for spherical planets (though
there would be if SRTC++ modeled topography—future work).
In general, there should be 2n different colorCCDs per
scattering order n (e.g., for n=3: 000, 001, 010, 011, 100,
101, 110, and 111). Elephants allow the user to set the
maximum scattering order of which to keep track.

2.2. Main Program Loop

Independent parallel execution threads each start with a
photon ID. From this ID, the photon generator determines the

Figure 2. We show here synthetic images from SRTC++ showing output from a Tomasko et al. (2008) Titan atmosphere with a gray surface bitmap alternating
between albedo of 0.03 and 0.20. The colormap is that from Barnes et al. (2007), which uses 5.0μmas red, 2.01μmas green, and 1.3μmas blue. The images show
the expected phase behavior, bright at opposition and inferior conjunction, and dimmer at maximum elongation. The pleasant Titan orange color is fortuitous based on
the assumed gray surface, one that does not match that of actual Titan in the near-infrared. The surface albedo pattern for this figure comes from a small jpeg file
produced in GIMP (like Photoshop) by writing black text on a white background, but SRTC++ can import any raster image of atmozone albedos.

3

The Astronomical Journal, 155:264 (12pp), 2018 June Barnes et al.

initial position, direction, and amplitude for the photon in
question and sends it into the main program loop.

The main loop is as follows:

(1) plots out the photon’s path forward and backward from
its present location, turning that path into a 1D photon
traverse through the atmosphere (details in
Section 2.2.1);

(2) generates a random excursion for this photon in scattering
optical depth space τscat (details in Section 2.2.2);

(3) translates that random τscat into a physical location for
scattering along the photon traverse (details in
Section 2.2.3)—allowed types of scatter are surface,
atmosphere, or space (the latter indicates that the photon
has escaped the atmosphere, in which case its amplitude
is updated to 0.0);

(4) updates the detectors (details in Section 2.1.3) based on
this scatter; and

(5) attenuates the photon’s amplitude by the single-scattering
albedo at the scatter location, and updates the photon’s
direction based on the local scattering phase function
(details in Section 2.2.4).

The resulting new photon position, direction, and amplitude
then inform the next iteration of the loop. Each thread
continues calculating its photon’s path through scattering
events until that photon either flies off into space or its
amplitude becomes identically 0.0 (as would happen if the
albedo were zero either somewhere in the atmosphere or at the
surface), at which time the loop terminates and the thread asks
for a new photon ID to calculate.

We describe the details of each of these steps in the
following sections.

2.2.1. Photon Traverse

A photon traverse class instantiation translates the
photon’s 3D position and direction into a 1D path. The path is
centered on the photon’s present location, and we parameterize
the distance from that location as d such that negative values
are behind the photon and positive values are ahead of it.
Armed with this coordinate collapse, we then can determine the
atmospheric conditions at any point along the photon’s
traverse.

Specifically, the photon traverse looks up which atmolayer
and atmozone corresponds to each value for d. The most
important conditions that we need are the volume extinctions
κ(λ) at each point. We then numerically integrate that extinction
(using qromb from Press et al. 1992) along the photon’s
traverse to calculate the cumulative τ between the photon’s
present position and each position d. While the original IDL
code on which SRTC++ builds uses an analytic approximation
to the Chapman Integral (Smith & Smith 1972), we instead
evaluate the integrated optical depth numerically. While the
numerical approach slows program execution, Checlair et al.
(2016) shows that the compromises inherent to the (Smith &
Smith 1972) approximation in puffy atmospheres like Titan’s
result in 10% systematic errors. It follows that we find the
slow-
but-accurate numerical calculation preferable.

Figure 3 shows an example of how we calculate such an
integral. The red line represents the photon traverse next
to Titan (a near-grazing impact parameter starting from deep
space for this particular photon), and the plot above the red line

shows the integrated haze optical depth at each point along the
traverse. We take advantage of this knowledge of the integrated
optical depth along the path for Steps 3 and 5.

2.2.2. Generating Random Optical Depths

We need to calculate a location where a photon might scatter
in optical depth τscat space. The probability of it scattering at
low τ is much greater than that at higher τ. (By higher τ, more
of the photons have been already scattered out of the beam.)
Achieving this aim requires the ability to generate random
numbers between 0.0 and +¥ with an exponentially decaying
distribution as e− τ.
To do so, we follow Press et al. (2007). First, we generate a

random number frandom between 0.0 and 1.0 using a modified
version of the Numerical Recipes routine Ranq1 Press et al.
(2007). The modifications allow for parallelization by creating
different instances of the random number generator (seeded
with different initial values) for each thread so that they do not
interfere with one another. To get the appropriate random
τrandom we then set

fln . 1random randomt = - ()

2.2.3. Determining the Scattering Location

Having generated a random scatter location along d in τ
space (at τrandom), we then need to invert the τ versus d plot in
Figure 3 to determine the value of d corresponding to τrandom.
From d, we then infer the precise location in 3D space where
the scatter will occur. SRTC++ determines the appropriate
drandom for the random input τrandom numerically using the
Ridders’ Method zero-finding routine zriddr from Press
et al. (1992).

Figure 3. This figure shows a stylized representation of an example photon
traverse through Titan’s atmosphere. The plot shows the cumulative optical
depth as a function of distance along a photon traverse indicated by the red ray.
SRTC++ uses this type of cumulative optical depth function within a photon
traverse to both calculate net atmospheric opacity and to ascertain the location
in physical space at which a scattering event occurs, translating from optical
depth space. We do that by generating a random photon optical depth τrandom at
which the next scatter occurs from Equation (1) and then tracing that τrandom to
its corresponding location along the traverse in this plot. This particular
photon’s photon traverse heads in from deep space, encounters Titan’s
outer atmosphere, and then continues down before reaching a closest approach
in the troposphere but above the surface. It then heads back out into space. The
breaks in slope occur at the interfaces between atmospheric layers as specified
in the Tomasko et al. (2008) atmospheric model.

4

The Astronomical Journal, 155:264 (12pp), 2018 June Barnes et al.

2.2.4. Updating the Detectors

After the scattering location has been determined, but before
we determine the result of the scatter itself (i.e., the photon’s
direction and amplitude moving on from this scatter), we
update the detector to reflect the response that it would see from
this scattering event (Yusef-Zadeh et al. 1984; Dupree &
Fraley 2012; Jonsson 2006). This step represents the critical
insight of our Monte Carlo approach: instead of a complete
Monte Carlo simulation of light scattering, in which only a very
few photons would find their way to the detector, we instead
accumulate contributions of each photon at the detector as
generated by each scattering event. And then we throw away
the the Monte Carlo photons after they leave Titan’s
atmosphere to avoid double-counting. This approach has come
to be known as the “peeling-off” technique.

So, let us restate this critical insight in another way. We use
the Monte Carlo photons pinging around through the atmos-
phere to determine amplitudes, locations, and geometries for
scattering. But we never record the results of the primary
photon itself at any detector. Every photon eventually makes its
way out of the atmosphere, at which time we ignore it and
move on to the next photon to be calculated. Instead at the
instance of each scattering, and separately for each detector, we
calculate the explicit contribution that the particular scattering
in question would have at those detectors. It follows that the
detection step is not Monte Carlo but instead is determinitive
allowing for efficient use of computation power.

The detector is invoked with a call that passes a photon—the
photon with its location as the location of the scatter but with
the direction of the photon prior to this particular scattering
event. The detector then calculates the relative scattering angle
fd between its position and the photon, recording the effective
charge c received at the detector based on the photon’s initial
amplitude An, the scattering phase function p(fd), the optical
depth between the scatter and the detector τoutbound, and the
single-scattering albedo of the atmosphere at the point of
scatter ω (note that we treat scattering and gaseous absorption
together such that ω represents both components)

c x y A p e, , . 2n d
outboundl w f+= t-() () ()

We do this increment separately for each of the detectors in the
vector set up for this particular run.

Then, at the end of the entire SRTC++ run when all of the
photons are finished, we calibrate the detector into I/F by

I

F
c x y

1
, , 32

p
s l= ¡ () ()

where σ represents the number of photons incident per square
kilometer according to the photon generator and ϒ is the
colorCCD sampling in kilometers per pixel.

2.2.5. Calculating a New Direction after Scattering

Lastly, for each photon, SRTC++ executes the scattering in a
Monte Carlo fashion. We decrease the photon’s amplitude
according to the single-scattering albedo of the atmosphere.
SRTC++ calculates the new direction by (1) using the phase
function to calculate a cumulative distribution function
(fraction of scattered light scattered by an angle less than or
equal to the ordinate), (2) inverting that cumulative distribution
function into angle as a function of fraction, and (3)
interpolating the inverse cumulative distribution function to

find the right new angle. Step 3 involves generating a random
number in the usual uniform 0.0–1.0 variate fashion, finding
where that value would fall in the inverse cumulative
distribution function, and then interpolating to find the actual
scattering angle implied. Because generating and inverting the
cumulative distribution in Steps 1 and 2 depend only on the
phase function, we calculate the inverse cumulative distribution
functions prior to entering the primary code loop and then all
threads share access to the results. Importantly, this approach
allows for use of arbitrary phase functions and/or different
phase functions in different portions of the atmosphere—we
have no requirement that a phase function be decomposable
into Henyey–Greenstein or polynomial expansions.
Once we have decided upon a scattering angle, we generate a

random azimuth between 0 and 2π. Then comes a kind of
tricky part. The scattering angle and azimuth are valid for a
coordinate system oriented along the direction of travel of the
photon prior to the scattering event. So we transform the initial
x, y, z-basis direction vector into one in this new reference
frame where the photon travels in +x prior to the scatter. Next,
we use the new random scattering angle and azimuth to
determine the photon’s outgoing direction after the scatter, but
still in the reference frame based on the direction prior to the
scatter. Lastly, we transform this outgoing vector back into x, y,
z-space and send this post-scatter photon back around the loop
for another round.

3. Validation

Any new radiative transfer scheme can only start to be
trusted after it faithfully reproduces known endmember test
cases. To that end, we use a series of validation test cases to
verify that SRTC++ reproduces known cases at a satisfactory
level. We use analytic and existing numerical plane-parallel
models as our primary comparitors due to their accuracy at high
optical depths. (Optically thin and single-scattering approxima-
tions to spherical atmospheres (i.e., Rages & Pollack 1983;
Squyres et al. 1985) might also be relevant in future contexts.)

3.1. Lambertian Surface and Thick Atmosphere

The first, simplest check that we run verifies that bare
surfaces and infinitely deep atmospheres modeled with SRTC+
+ yield comparable answers to analytical results.
For the surface case, we use an albedo equals 1.0 Lambert

sphere in combination with an extremely tenuous 1×10−6

optical depth atmosphere. We verified that this setup produces
an average I/F of 2/3 when integrated across the entire disk
from 0° phase.
We next compare SRTC++’s results for a high-optical-depth

atmosphere 30-km thick (here assumed to be τtotal=5.0 with
uniform extinction for testing purposes—higher τ takes longer
to calculate with diminishing returns) to the theoretical results
for an plane-parallel, optically thick atmosphere as calculated
by Chandrasekhar (1950). Chandrasekhar (1950) shows that

I F H H0,
1

4
40

0
0m w

m
m m

m m=
+

() () () ()

where I is the incident intensity, F is the resulting flux field, ω is
the single-scattering albedo, and μ and μ0 are the cosines of the
angles of the observer and the source (the Sun) with respect to
the zenith direction (Chandrasekhar (1950), Equation (26)–(118).
H() is Chandrasekhar’s H-function.

5

The Astronomical Journal, 155:264 (12pp), 2018 June Barnes et al.

We rewrite Equation (4) to switch out μ and μ0 in favor of
αs instead, which equate to the number of traversed atmo-
spheres in the relevant geometry from a plane-parallel
atmosphere. So

e

1 1

cos
5a

m
= = ()

and

I

F
H H

0, 1

4
. 6

0

a
w

a
a a

a a=
+


() () () ()

We show the resulting comparison of numerical integrations
of Equation (6) over the full disk, as compared to results from
SRTC++, in Figure 4 (see also tabulations of brightness
distribution across the disk in this case from Table 3 in Dlugach
& Yanovitskij 1974). We assume an isotropically scattering
atmospheric phase function in both cases for simplicity (we use
more complex atmospheric phase functions in later tests
outlined below). Figure 4 shows four different curves in
different colors—one for the spherical planet as viewed at four
different phase angles (0°, 45°, 90°, and 135°). The SRTC++
result closely tracks the theoretical result of the Chandrasekhar
slab all the way up to just below a single-scattering albedo of
1.0 where the theoretical value no longer applies. It follows that
SRTC++ works for this simple phase function in a multiple-
scattering regime.

3.2. Atmosphere and Surface

For the next verification step, we compare SRTC++ results
to those of a more general semianalytic model. We use a model
derived by one of us (BKJ) from Thomas & Stamnes (2002)
and initially used in Vixie et al. (2015). The model separately
calculates I/F contributions from different scattering histories
involving at most one atmospheric scatter. Specifically, we

look at the terms that correspond to: (1) photons that make it
through the atmosphere, scatter off the surface, and make it all
the way out unscathed; (2) photons that scatter off the
atmosphere once and then back to the detector; (3) photons
that scatter first off the atmosphere, and then off the surface,
before being detected; and (4) photons that scatter off the
surface first, then scatter off the atmosphere on their way out.
Using elephant detectors in SRTC++, then, we can compare
the Monte Carlo result directly to the semianalytical result for
each scattering history individually.
In this comparison, we assume a uniform-extinction, 30-km-

thick atmosphere with haze that scatters according to the
Tomasko et al. (2008) phase function below 80 km. For
purposes of the test, we assume optical depths τ and single-
scattering albedos ω as shown in Table 1. These values are
consistent with both Huygens results (Tomasko et al. 2005) and
Cassini measurements of atmospheric transmission within
Titan’s spectral windows (Barnes et al. 2013; Hayne et al.
2014; Maltagliati et al. 2015a). As we intend to test our model
and not simulate actual Titan in this particular instance, we set
the surface albedo A=1.0 and we ignore gaseous absorption.
On the SRTC++ side, this model run uses 22,606,068

photons, illuminating the full disk of Titan. We install 18
different detectors, each elephants in this case, spread
out in phase angle from the Sun from 0° to 170° in 10°
increments. This run took overnight to complete.

3.3. One Scatter at Surface (__0)

The first term corresponds to scatter only from the surface,

I

F
A i e e, , 7s

i e__ 0 p f= F t a a- +() ()(() ())

where i is the incidence angle, e is the emission angle, and f is
the phase angle. I __ 0 corresponds to the intensity at the detector
for light that only reflects off the surface one time and that is
not extincted by the atmosphere on the way in or the way out.
We convert this to the more easily interpreted I/F by dividing
by the solar flux F. A is the surface albedo. i e, ,s fF () refers to
the surface phase function (hence the s), which could
potentially be a function of the incidence, emission, and phase
angles. Finally, τ is the one-way atmospheric optical depth at
normal geometry (i.e., looking straight down or up through the
atmosphere), and the α functions of incidence (i) and emission
(e) correspond to the number of atmospheres traversed by
photons in this geometry under the plane-parallel approx-
imation—so i

i

1

cos
a =() .

Figure 4. We show here a comparison between disk-integrated I/F values for
an optically thick atmosphere viewed at 0°, 45°, 90°, and 135° phase. We
assume an isotropic atmospheric scattering phase function. The results
calculated by SRTC++(asterisks) and by numerical integration of Chandrase-
khar’s slab equation (solid lines, from Equation (6)) substantially agree with
one another for this simple case.

Table 1
Atmospheric Parameters Assumed for the Orange-rind Atmosphere Validation

Described in Section 3.2

Wavelength Optical Depth Single-scattering Albedo

0.93 μm τ0.93=3.2 ω0.93=1.00
1.08 μm τ1.08=2.5 ω1.08=0.99
1.28 μm τ1.28=2.1 ω1.28=0.98
1.58 μm τ1.58=1.45 ω1.58=0.96
2.0 μm τ2.0=1.02 ω2.0=0.77
2.68 μm τ2.68=0.8 ω2.68=0.507
2.78 μm τ2.78=0.8 ω2.78=0.463
5.0 μm τ5.0=0.3 ω5.0=0.4998

6

The Astronomical Journal, 155:264 (12pp), 2018 June Barnes et al.

We show the results for the 1-scatter from surface case in
Figure 5. In this plot and the other comparisons to the
semianalytical model, we generate our error bars empirically.
For each geometry (i.e., i=e=20°), we collect all of the
pixels in the colorCCD that match the incidence and emission
to within a given tolerance (here we use 5°). We assign the
asterisk SRTC++ value in Figure 5 to the average of the pixels
in that collection, and the error to their standard deviation.
Because that collection includes a wide diversity of phase
angles between f=0° and f=i+e, this approach over-
estimates the errors. But because we compare the same set of
pixels in both the SRTC++ and semianalytical cases, the
validation comparison remains valid. SRTC++ and the
semianalytical approach agree within very tight tolerances—
not entirely unexpected as this case is particularly simple
compared to multiple-scattering cases.

3.4. One Scatter in the Atmosphere (__1)

In the semianalytical model, light that scatters only once in
the atmosphere has an intensity of

I

F
p i e

e

i e
e, , 1 8i e__ 1 pw f

a
a a

=
+

- t a a- +() ()
() ()

() ()(() ())

where new parameter ω corresponds to the atmospheric single-
scattering albedo and new function p to the atmospheric
scattering phase function, which potentially depends on the
incidence, emission, and phase. We compare the results of this
equation and that of SRTC++ in Figure 6.

The resulting plots show more complicated behavior than
those for the surface-only case. At longer wavelengths (i.e., at
5 μm), the expected I/F increases monotonically with viewing
angle (we assume that the incidence angle equals the emission
angle so as not to end up with 92 different lines in the plot) as
the higher path length increases the slant optical depth. For
shorter wavelengths, though, like at 0.93μm, the situation gets

more complicated. The i=e=0° case shows up as the
dimmest. But instead of a monotonic increase, the 0.93μmI/F
peaks at i=e=20° before decreasing and later increasing
again toward very high incidence and emission. The more
highly forward-scattering phase function at shorter wavelengths
causes the disparity. Note the interesting case where the two
blue curves, i=e=20° and i=e=70° both have the same
I/F at 0.93μmbut then diverge as they head toward longer
wavelengths and lower optical depths. This effect is a bit
unintuitive, but shows up in both models as SRTC++ and the
semianalytic model track each other well up to i=e=70°.
At i=e=80°, though, the two models disagree. Presum-

ably, this discrepancy results from applying the semianalytic
model, which assumes plane-parallel geometry, beyond the
point where it produces physical results.

3.5. Two Scatters: Atmosphere, then Surface (_10)

We also explore the behavior of the orange-rind plane-
parallel atmosphere in SRTC++ where photons experience two
scatters. While SRTC++ tracks the signal independently for any
number of scatters, and where they occur, with elephant
detectors, here we look at just the two-scatter case for ease of
comparison to the semianalytical model. This case is quite a bit
trickier for the analytical model in that we need to integrate
over the upward hemisphere as seen from the surface, which
encompasses all of the possible paths that the photon could take
between its initial atmospheric scatter and its eventual surface
scatter. We parameterize that hemisphere in terms of the zenith
distance ζ and the azimuthal angle θ in the sky as seen from the
surface scatter point. The hemispherical integral becomes one
over ζ and θ such that

9

I

F
e

p i
i

i
e d d

_

, , , , .

e

s

10

0

2

0

2
ò ò

pw

z q
a

a a z
z q q z

=

´
-

F

ta

p p

-

()

() ()
() ()

()

()

where now both the phase function for the surface Φs and that
for the atmosphere p drive the final flux. We compute this

Figure 5. This figure is the first of four plots comparing SRTC++ to a
semianalytical model (described in Section 3.2) at different scattering orders.
For each of these four plots, we assume a 30-km deep orange-rind atmosphere
with the scattering phase function of Tomasko et al. (2008) for below 80km (to
test SRTC++’s use of complex phase functions). The optical depth τ and
single-scattering albedo ω were chosen to be representative of Titan within
each window. This particular plot shows I/F as a function of wavelength
within Titan’s near-infrared atmospheric windows for light that only scatters off
the surface and not from the atmosphere. Both approaches arrive at the same
answers for this (relatively simple) case.

Figure 6. We again compare SRTC++ results to semianalytical results, in this
case for photons that only scatter one time within the atmosphere. The solid
line plots the result of Equation (8) while the asterisks with error bars show
SRTC++’s answer. The analytical model assumes plane-parallel geometry, and
hence is well outside its range of validity by the time i=e=80°.

7

The Astronomical Journal, 155:264 (12pp), 2018 June Barnes et al.

nested integral numerically. If you try it yourself, take care to
ensure that your inputs to the phase functions appropriately
correspond to the angles between the incident and intermediate
vector for the atmospheric phase function, and for the
intermediate to emission vector for the surface phase function.

The result of that numerical integration of Equation (9) we
show in Figure 7, along with the equivalent SRTC++ answer.
The models track together across 80° in incidence and
emission. In fact, they track surprisingly well—at least partially
as a result of the squat 30-km atmospheric extent imposed on
the SRTC++ calculations for the precise purpose of testing their
comparison to the plane-parallel semianalytical model.

We show a spatial example of the results in Figure 8 as
viewed from the detector with 90° phase. The bright red near
the terminator of the semianalytical model is bogus as the very
high incidence angle near the terminator invalidates plane-
parallel results. The pixel-to-pixel noise in the SRTC++ image
is real—the more photons in the simulation, though, the higher
the signal-to-noise gets.

3.6. Two Scatters: Surface, then Atmosphere (_01)

The complement of Equation (9), photons bouncing first
from the surface then from the atmosphere and to the detector,
is given by

I

F
e

p i
e

e
e d d

_

, , , , .

10

i

s

01

0

2

0

2
ò ò

pw

z q
a

a a z
z q q z

=

´
-

F

ta

p p

-

() ()
() ()

()

()

()

The hemisphere of integration remains the sky from the surface
point, but now the intermediate segment comes after that surface
scatter instead of before it. Owing to the similarity between
Equation (9) and Equation (10), the two equations yield the same
answer regardless of the atmospheric phase function in the case

where the surface phase function is Lambertian. The I/F differs
between the _10 and _01 cases under non-Lambertian surface
phase functions (we see a difference when using an isotropic
surface phase function, for example).
Given the assumed Lambertian surface scattering we see

results in Figure 9 for the surface-then-atmosphere case are
consistent with those from the atmosphere-then-surface case.
The noise in the SRTC++ calculations is higher here, though,
because of the highly forward-scattering nature of Titan’s haze
particles (from the Tomasko et al. (2008) phase function).
Those fewer photons whose direction after their surface scatter
brings them to within a few degrees of being pointed at the
detector contribute more strongly to the detected intensity;
hence the statistics of those relatively smaller numbers yields
higher noise in Figure 7 than in Figure 9. Overall, the results of
the SRTC++/semianalytical comparisons give us confidence in
the SRTC++ calculations.

3.7. Plane-Parallel Titan

For a final validation, we compare SRTC++ calculations to
those of the existing Spherical Harmonic Discrete Ordinate
Method plane-parallel radiative transfer model from Evans
(2007) adapted for Titan by Hirtzig et al. (2013). We ran the
Hirtzig et al. (2013) model without gaseous absorption and for
endcases with surface albedo A=0.0 (all atmosphere) and
A=1.0. For purposes of validation of SRTC++, the Hirtzig
et al. (2013) model run assumes a Tomasko et al. (2008)

Figure 7. We plot here the results of double-scattering radiative transfer
calculations for the I/F as a function of wavelength for a Titan-like orange-rind
atmosphere. In particular, here we only track those photons that first scatter off
of the atmosphere, and then scatter off the surface to the detector. Because only
a fraction of the total photons simulated experience this precise history, the S/
N in the SRTC++ data has decreased relative that in Figure 5. However the
results agree well between the Monte Carlo SRTC++ and the semianalytical
model from Equation (9).

Figure 8. These images show the spatial results from the _10 calculations
described in Section 3 for both the semianalytical model (left, from
Equation (9)) and SRTC++ (right). The relatively low S/N evident in the
pixel-to-pixel variation results from (1) selecting only that fraction of photons
that experience the specific history _10 (i.e., ones that first bounce off of the
atmosphere, then bounce off of the surface and arrive at the detector) and (2)
using this many photons allowed us to sufficiently demonstrate that SRTC++
satisfactorily reproduces known plane-parallel results as shown in Figure 7.
Running additional photons always improves the S/N, but takes progressively
longer owing to the S/N’s dependence on the square-root of the number of
photons input. The colors map red to 5.0μm, green to 2.0μm, and blue to
1.3μm. This image depicts a uniform sphere of albedo 1.0 illuminated from
the left at 90° phase angle. Hence the strong red signal in the semianalytical
case comes from geometry near the terminator with high incidence angle i—a
regime in which its plane-parallel assumptions break down.

8

The Astronomical Journal, 155:264 (12pp), 2018 June Barnes et al.

atmospheric profile and haze phase functions, with interpolated
single-scattering albedos between the high and low layer values
within the middle atmospheric layer.

We then set up SRTC++ with an analogous atmosphere, but
compressed vertically by a factor of 100 to more closely
emulate the plane-parallel assumptions of the Hirtzig et al.
(2013) model. We use two separate runs of 135,636,528
photons each, one for A=0 and one for A=1, with the
photon generator emitting photons concentrated on areas
with the appropriate geometry. We ran each run on a separate
computer over a 3-day weekend.

Figure 10 shows the resulting intercomparisons. The Hirtzig
et al. (2013) plane-parallel model and SRTC++ both agree from
i=e=0° through i=e=50°.

4. Duration

A drawback to Monte Carlo methods for 3D radiative
transfer is that they tend to be slow. We have offset this
weakness with parallelization and a fast implementation in C+
+, but undoubtedly we can optimize further. In the meantime,
we show an indication of how fast SRTC++ runs right now in
Figures 11 and 12.

Figure 11 plots the computational speed in terms of
throughput in photons per second as a function of the number
of CPU cores that we use in the calculation. These runs
executed on a dual 8-core (16 total cores) 3.2 GHz machine
using the Titan model atmosphere from Section 3.7 with 57800
photons per run. As we designed the SRTC++ algorithm for
each photon to calculate almost entirely independently from the
others, the program is “embarrassingly parallel” in that we see
only minor degradation in throughput per core even up to 16
cores executing simultaneously.

Atmospheric optical depth τ also significantly affects
compute time. In Figure 12, we show the computation time
for 57800 photons in uniform-extinction orange-rind atmo-
spheres of differing optical depths. Computation times increase
greater-than-linearly with optical depth, so while radiative
transfer on Titan at 2 μm where τ=1 proceeds rapidly,

calculations at visible wavelengths where τ∼10 take
considerably longer.

5. Application

We developed SRTC++ to complement existing plane-
parallel codes. Those models do a good job of modeling Titan
near-IR reflectance spectra in geometries i60° e60°
where the plane-parallel approximation holds. SRTC++ will
model spatial problems, creating simulated images to char-
acterize near-limb and near-terminator geometries, imaging
resolution and surface nonuniformity, surface phase functions,
specular reflections, and other problems.

Figure 9. This figure represents our last comparison between SRTC++ and the
semianalytical model. In this two-scatter, surface-then-atmosphere case, the
lines show Equation (10) and the asterisks with error bars show the SRTC++
result. Although the semianalytical values match those from the atmosphere-
then-surface case (Figure 7), the higher SRTC++ noise here (i.e., lower S/N)
results from Titan’s highly forward-scattering haze particles’ phase function
(see the text).

Figure 10. This plot compares SRTC++ results to those from the Hirtzig et al.
(2013) plane-parallel model for a Tomasko et al. (2008) Titan atmosphere with
no gaseous absorption. The top set of points correspond to a model with surface
albedo A=1.0, while the lower plots show results for a black A=0 surface.

Figure 11. In this first of two benchmark graphs, we show SRTC++ calculation
speed as a function of the number of CPU cores used in the calculation. The
throughput is nearly linear, with a small concave-down aspect resulting from
the computation overhead of running in parallel. On the whole, the system
scales well in this CPU regime. The gray dashed line provides a reference to
guide the eye in assessing deviations from straight-line behavior.

9

The Astronomical Journal, 155:264 (12pp), 2018 June Barnes et al.

To illustrate SRTC++’s capabilities, we use it to calculate
emission phase functions for Titan, which we show in Figure 13.
Complementary to our earlier figures, like Figure 7, which
assumes specular geometry with an incidence angle equal to the
emission angle, Figure 13 uses a fixed incidence angle of 60°
and varies only the emission angle. If you were a spacecraft
starting right above the illuminated point on the 4PM afternoon
equator, you could acquire an emission phase function by staring
at that point as you moved around the moon. But you could do
so in any direction. To show how that direction would affect
your measurements, we show the emission phase function as if
you were in a prograde equatorial orbit heading toward the
terminator and looking back (dark green), as if you were in a
retrograde equatorial orbit heading toward noon (red), and as if
you were in a polar orbit (blue). The differences between these
azimuths result from the backscattering (red) and forward-
scattering (dark green) properties of Titan’s atmospheric haze.

The SRTC++ algorithm as we describe it here represents an
initial first-cut that can start to address useful problems.
However, we plan many improvements and optimizations in
the future as needed. For instance, right now SRTC++ only
accounts for gaseous absorption within the atmospheric single-
scattering albedo parameter. As a future improvement, we
intend to separately treat haze and gas opacities, using
correlated-k coefficients to simulate VIMS’ rather coarse
spectral resolution elements. SRTC++ will probably never be
the best choice for large problems that require high spectral
resolution, however, like computing radiative atmospheric
heating rates.

While at present SRTC++ includes a canned Tomasko et al.
(2008) atmospheric model, Doose et al. (2016) since described
improvements on the Tomasko et al. (2008) atmospheric
model. It follows that while we will maintain the present model
capabilities, future applications of SRTC++ will preferentially
assume the Doose et al. (2016) Titan haze scattering properties.

The surface phase functions included in SRTC++ now (just
isotropic and Lambertian) are azimuthally symmetric. How-
ever, Buratti et al. (2006) showed a long time ago that Titan’s
surface does not obey a Lambertian law but rather shows
significant backscattering properties. Buratti et al. (2006) used
a Henyey–Greenstein surface phase function. But with better
knowledge of diffuse atmospheric illumination from SRTC++,
along with an additional 12 years of VIMS data, we hope to
infer more detailed surface properties on Titan’s various
terrains from their phase functions using SRTC++.
Specular reflections from Titan’s lakes and seas (Stephan

et al. 2010; Barnes et al. 2011; Soderblom et al. 2012) will
prove a separate challenge. Purely specular surfaces will
require separate calculations of two different paths to each
detector through the specular point. Specular reflections from a
roughened surface (like the wavy Punga mare described in
Barnes et al. 2014), however, can be modeled with the present
construction via particular non-azimuthally symmetric phase
functions.
Because of its inherently 3D structure, SRTC++ can also

simulate atmosphere-only phenomena. In particular, limb
observations of atmospheric haze, stellar and/or solar occulta-
tions, and Titan’s winter south polar cloud (West et al. 2016)
would be amenable to analysis using SRTC++.
Thinking bigger-picture, SRTC++ can also be applied to the

photometric and spectroscopic properties of exoplanets. Direct
detections of planets (e.g., Kalas et al. 2008) measure disk-
integrated planetary properties; SRTC++ could be used to
accurately forward-compute expected photometric behavior of
such planets as a function of phase as they orbit their parent star
(Cahoy et al. 2010). SRTC++ might also be profitably applied
to transit spectroscopy of planets (Hubbard et al. 2001)—
particularly those with thick and/or extended Titan-like
atmospheres (Checlair et al. 2016). The high slant optical
depths in such cases (Fortney 2005), potentially combined with
east-west and equator-pole inhomogeneities (Fortney et al.
2010), lend themselves naturally to SRTC++’s explicit and
accurate approach.
While not yet incorporated, the detector design allows

for future intelligent coaddition of colorCCDʼs to maximize
CPU time. For instance, after a single run, if the user desires a
higher S/N, then results from a second run could be coadded
with those of the first run. Similarly, separate instances of
SRTC++ could be run on different computers, only to have
their colorCCD results combined later to amalgamate separate
computers as a greater cluster.
Right now, SRTC++ uses OpenMP for parallelization.

OpenMP unlocks all of the cores on a single computer for
use. A future improvement might be to use the alternate
parallelization scheme MPI, which allows networks of
computers to all contribute their CPU cores toward a particular
problem. Such a change would enable SRTC++ to run on large
supercomputers that do not use shared memory as well.
The compilation process might be facilitated by use of a

photon generator more sophisticated than that of our photo-
ngenerator_square. The raster pattern performs much
better than an entirely random photongenerator in that its
noise drops as N−1 as opposed to N

1
2- (Press et al. 2007, page

404). However, it requires that the user decide in advance how
many photons to use. It would be straightforward to instead
implement a new photongenerator to make use of the
Sobol’ (1967) distribution. The Sobol’ sequence is subrandom

Figure 12. We plot here the total computation time for an uniform orange-rind
atmosphere with different optical depths. Higher optical depths require much
longer to complete; it follows that SRTC++ will be slow when simulating, for
instance, radiative transfer through Titan’s atmosphere at optical wavelengths.

10

The Astronomical Journal, 155:264 (12pp), 2018 June Barnes et al.

an deterministic, but progressively fills in holes left in 2D space
such that it could be cut off at an arbitrary point without
introducing spatial irregularities (see Press et al. 2007,
Figure 7.8.1).

Further speedup may be possible using an exact precompu-
tation of the single-scattering component. Because most of the
signal in a SRTC++ output comes from singly scattered
photons (either __0 or __1), most of the noise comes from that
component, too. If the single-scattered components of an
elephant detector were assigned as semianalytical values,
then the net noise would depend only on the higher-order
scattering components. The ultimate result of such a

modification would be higher precision results with fewer
input photons.
As written, SRTC++ depends on other packages and thus

requires specific effort to install on operating system
architectures other than that on which we wrote it (FreeBSD).
It follows that we provide access to SRTC++ via a whole-disk
image of a working FreeBSD system that can be run from a
thumb drive or as a virtual machine. You can find that disk
image at the SRTC++ github repository located at https://
github.com/SRTCpp/Code where we also include a copy of
the primary source code files (which are also accessible via
DOI as doi:10.5281/zenodo.1193815).

Figure 13. These graphs show an example of SRTC++’s capabilities in the form of emission phase functions for Titan at four representative near-infrared window
wavelengths. Each uses a single illuminated patch on the surface at the equator with 60° incidence angle. SRTC++ shows the interesting differences in the I/F as a
function of emission when viewed at different angles: red shows the emission phase function as viewed from lower phase angles (i.e., toward the Sun), dark green
shows the emission phase function at higher phase angles (the forward-scattering regime), and blue shows the emission phase function as acquired from detectors
heading north from the illuminated patch (orthogonal to the Sun–Titan–Spacecraft plane).

11

The Astronomical Journal, 155:264 (12pp), 2018 June Barnes et al.

https://github.com/SRTCpp/Code
https://github.com/SRTCpp/Code
https://doi.org/10.5281/zenodo.1193815

The authors acknowledge the support of the NASA/ESA
Cassini mission. J.W.B. acknowledges support from the NSF
Astronomy & Astrophysics (A&A) Program grant #1313427.
S.M.M., E.F.Y., and J.M.S. acknowledge support from NSF
grant #1518226. Additional support was provided by Hubble
program number HST-GO-12900.003-A from NASA through a
grant from the Space Telescope Science Institute, which is
operated by the Associate of Universities for Research in
Astronomy, Incorporated, under NASA contract NAS5-26555.
S.R. is partly supported by the Institut Universitaire de France.
S.R. and T.C. also acknowledge financial support from the
UnivEarthS LabEx program of Sorbonne Paris Cite (ANR-10-
LABX-0023 and ANR-11-IDEX-0005-02) and the French
National Research Agency (ANR-APOSTIC-11-BS56-002 and
ANR-12-BS05-001-3/EXO-DUNES). The authors acknowl-
edge Johnathon Ahlers for insights into compiling SRTC++
under Linux. Thanks to reviewer Chris McKay and to editor
Thomas Robitaille for constructive comments.

ORCID iDs

Jason W. Barnes https://orcid.org/0000-0002-7755-3530
Brian K. Jackson https://orcid.org/0000-0002-9495-9700

References

Ádámkovics, M., Mitchell, J. L., Hayes, A., et al. 2016, Icar, 270, 376
Baes, M., Davies, J. I., Dejonghe, H., et al. 2003, MNRAS, 343, 1081
Barnes, J. W., Brown, R. H., Soderblom, L., et al. 2007, Icar, 186, 242
Barnes, J. W., Brown, R. H., Turtle, E. P., et al. 2005, Sci, 310, 92
Barnes, J. W., Clark, R. N., Sotin, C., et al. 2013, ApJ, 777, 161
Barnes, J. W., Soderblom, J. M., Brown, R. H., et al. 2009, P&SS, 57, 1950
Barnes, J. W., Soderblom, J. M., Brown, R. H., et al. 2011, Icar, 211, 722
Barnes, J. W., Sotin, C., Soderblom, J. M., et al. 2014, PlSci, 3, 3
Buratti, B. J., Sotin, C., Brown, R. H., et al. 2006, P&SS, 54, 1498
Cahoy, K. L., Marley, M. S., & Fortney, J. J. 2010, ApJ, 724, 189
Chandrasekhar, S. 1950, Radiative Transfer (Oxford: Clarendon Press)
Checlair, J., McKay, C. P., & Imanaka, H. 2016, P&SS, 129, 1
Coustenis, A., Lellouch, E., Maillard, J. P., & McKay, C. P. 1995, Icar, 118, 87
Dlugach, J. M., & Yanovitskij, E. G. 1974, Icar, 22, 66
Doose, L. R., Karkoschka, E., Tomasko, M. G., & Anderson, C. M. 2016, Icar,

270, 355
Dupree, S. A., & Fraley, S. K. 2012, A Monte Carlo Primer: A Practical

Approach to Radiation Transport (Berlin: Springer)
Evans, K. F. 2007, JAtS, 64, 3854
Fortney, J. J. 2005, MNRAS, 364, 649

Fortney, J. J., Shabram, M., Showman, A. P., et al. 2010, ApJ, 709, 1396
Griffith, C. A. 1993, Natur, 364, 511
Griffith, C. A., Doose, L., Tomasko, M. G., Penteado, P. F., & See, C. 2012a,

Icar, 218, 975
Griffith, C. A., Lora, J. M., Turner, J., et al. 2012b, Natur, 486, 237
Griffith, C. A., Penteado, P., Baines, K., et al. 2005, Sci, 310, 474
Hayne, P. O., McCord, T. B., & Sotin, C. 2014, Icar, 243, 158
Hirtzig, M., Bézard, B., Lellouch, E., et al. 2013, Icar, 226, 470
Hubbard, W. B., Fortney, J. J., Lunine, J. I., et al. 2001, ApJ, 560, 413
Jonsson, P. 2006, MNRAS, 372, 2
Kalas, P., Graham, J. R., Chiang, E., et al. 2008, Sci, 322, 1345
Maltagliati, L., Bézard, B., Vinatier, S., et al. 2015a, Icar, 248, 1
Maltagliati, L., Rodriguez, S., Sotin, C., et al. 2015b, in European Planetary

Science Congress 10, EPSC2015-687
McKay, C. P., Pollack, J. B., & Courtin, R. 1989, Icar, 80, 23
Porco, C. C., Baker, E., Barbara, J., et al. 2005, Natur, 434, 159
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,

Numerical Recipes in C. The Art of Scientific Computing (Cambridge:
Cambridge Univ. Press)

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 2007,
Numerical Recipes: The Art of Scientific Computing (Cambridge:
Cambridge Univ. Press)

Rages, K., & Pollack, J. B. 1983, Icar, 55, 50
Rannou, P., McKay, C. P., & Lorenz, R. D. 2003, P&SS, 51, 963
Richardson, J., Lorenz, R. D., & McEwen, A. 2004, Icar, 170, 113
Robitaille, T. P. 2011, A&A, 536, A79
Rodriguez, S., Le Mouélic, S., Sotin, C., et al. 2006, P&SS, 54, 1510
Smith, B. A., Soderblom, L., Beebe, R. F., et al. 1981, Sci, 212, 163
Smith, F. L., & Smith, C. 1972, JGR, 77, 3592
Smith, P. H., Lemmon, M. T., Lorenz, R. D., et al. 1996, Icar, 119, 336
Sobol’, I. M. 1967, ZVMMF, 7, 784
Soderblom, J. M., Barnes, J. W., Soderblom, L. A., et al. 2012, Icar, 220, 744
Soderblom, L. A., Kirk, R. L., Lunine, J. I., et al. 2007, P&SS, 55, 2025
Solomonidou, A., Coustenis, A., Hirtzig, M., et al. 2016, Icar, 270, 85
Solomonidou, A., Hirtzig, M., Coustenis, A., et al. 2014, JGRE, 119, 1729
Squyres, S. W., McKay, C. P., & Reynolds, R. T. 1985, JGR, 90, 12
Stephan, K., Jaumann, R., Brown, R. H., et al. 2010, GeoRL, 37, L7104
Thomas, G. E., & Stamnes, K. 2002, Radiative Transfer in the Atmosphere and

Ocean (Cambridge: Cambridge Univ. Press), 546
Tomasko, M. G., Archinal, B., Becker, T., et al. 2005, Natur, 438, 765
Tomasko, M. G., Doose, L., Engel, S., et al. 2008, P&SS, 56, 669
Tomasko, M. G., & West, R. A. 2010, in Titan from Cassini-Huygens, ed.

R. H. Brown, J.-P. Lebreton, & J. H. Waite (Berlin: Springer), 297
Vixie, G., Barnes, J. W., Bow, J., et al. 2012, P&SS, 60, 52
Vixie, G., Barnes, J. W., Jackson, B., et al. 2015, Icar, 257, 313
West, R. A., Del Genio, A. D., Barbara, J. M., et al. 2016, Icar, 270, 399
Wolf, S. 2003, CoPhC, 150, 99
Xu, F., West, R. A., & Davis, A. B. 2013, JQSRT, 117, 59
Young, E. F., Rannou, P., McKay, C. P., Griffith, C. A., & Noll, K. 2002, AJ,

123, 3473
Yusef-Zadeh, F., Morris, M., & White, R. L. 1984, ApJ, 278, 186

12

The Astronomical Journal, 155:264 (12pp), 2018 June Barnes et al.

https://orcid.org/0000-0002-7755-3530
https://orcid.org/0000-0002-7755-3530
https://orcid.org/0000-0002-7755-3530
https://orcid.org/0000-0002-7755-3530
https://orcid.org/0000-0002-7755-3530
https://orcid.org/0000-0002-7755-3530
https://orcid.org/0000-0002-7755-3530
https://orcid.org/0000-0002-7755-3530
https://orcid.org/0000-0002-9495-9700
https://orcid.org/0000-0002-9495-9700
https://orcid.org/0000-0002-9495-9700
https://orcid.org/0000-0002-9495-9700
https://orcid.org/0000-0002-9495-9700
https://orcid.org/0000-0002-9495-9700
https://orcid.org/0000-0002-9495-9700
https://orcid.org/0000-0002-9495-9700
https://doi.org/10.1016/j.icarus.2015.05.023
http://adsabs.harvard.edu/abs/2016Icar..270..376A
https://doi.org/10.1046/j.1365-8711.2003.06770.x
http://adsabs.harvard.edu/abs/2003MNRAS.343.1081B
https://doi.org/10.1016/j.icarus.2006.08.021
http://adsabs.harvard.edu/abs/2007Icar..186..242B
https://doi.org/10.1126/science.1117075
http://adsabs.harvard.edu/abs/2005Sci...310...92B
https://doi.org/10.1088/0004-637X/777/2/161
http://adsabs.harvard.edu/abs/2013ApJ...777..161B
https://doi.org/10.1016/j.pss.2009.04.013
http://adsabs.harvard.edu/abs/2009P&SS...57.1950B
https://doi.org/10.1016/j.icarus.2010.09.022
http://adsabs.harvard.edu/abs/2011Icar..211..722B
https://doi.org/10.1186/s13535-014-0003-4
http://adsabs.harvard.edu/abs/2014PlSci...3....3B
https://doi.org/10.1016/j.pss.2006.06.015
http://adsabs.harvard.edu/abs/2006P&SS...54.1498B
https://doi.org/10.1088/0004-637X/724/1/189
http://adsabs.harvard.edu/abs/2010ApJ...724..189C
https://doi.org/10.1016/j.pss.2016.03.012
http://adsabs.harvard.edu/abs/2016P&SS..129....1C
https://doi.org/10.1006/icar.1995.1179
http://adsabs.harvard.edu/abs/1995Icar..118...87C
https://doi.org/10.1016/0019-1035(74)90167-5
http://adsabs.harvard.edu/abs/1974Icar...22...66D
https://doi.org/10.1016/j.icarus.2015.09.039
http://adsabs.harvard.edu/abs/2016Icar..270..355D
http://adsabs.harvard.edu/abs/2016Icar..270..355D
https://doi.org/10.1175/2006JAS2047.1
http://adsabs.harvard.edu/abs/2007JAtS...64.3854E
https://doi.org/10.1111/j.1365-2966.2005.09587.x
http://adsabs.harvard.edu/abs/2005MNRAS.364..649F
https://doi.org/10.1088/0004-637X/709/2/1396
http://adsabs.harvard.edu/abs/2010ApJ...709.1396F
https://doi.org/10.1038/364511a0
http://adsabs.harvard.edu/abs/1993Natur.364..511G
https://doi.org/10.1016/j.icarus.2011.11.034
http://adsabs.harvard.edu/abs/2012Icar..218..975G
https://doi.org/10.1038/nature11165
http://adsabs.harvard.edu/abs/2012Natur.486..237G
https://doi.org/10.1126/science.1117702
http://adsabs.harvard.edu/abs/2005Sci...310..474G
https://doi.org/10.1016/j.icarus.2014.08.045
http://adsabs.harvard.edu/abs/2014Icar..243..158H
https://doi.org/10.1016/j.icarus.2013.05.033
http://adsabs.harvard.edu/abs/2013Icar..226..470H
https://doi.org/10.1086/322490
http://adsabs.harvard.edu/abs/2001ApJ...560..413H
https://doi.org/10.1111/j.1365-2966.2006.10884.x
http://adsabs.harvard.edu/abs/2006MNRAS.372....2J
https://doi.org/10.1126/science.1166609
http://adsabs.harvard.edu/abs/2008Sci...322.1345K
https://doi.org/10.1016/j.icarus.2014.10.004
http://adsabs.harvard.edu/abs/2015Icar..248....1M
http://adsabs.harvard.edu/abs/2015EPSC...10..687M
https://doi.org/10.1016/0019-1035(89)90160-7
http://adsabs.harvard.edu/abs/1989Icar...80...23M
https://doi.org/10.1038/nature03436
http://adsabs.harvard.edu/abs/2005Natur.434..159P
https://doi.org/10.1016/0019-1035(83)90049-0
http://adsabs.harvard.edu/abs/1983Icar...55...50R
https://doi.org/10.1016/j.pss.2003.05.008
http://adsabs.harvard.edu/abs/2003P&SS...51..963R
https://doi.org/10.1016/j.icarus.2004.03.010
http://adsabs.harvard.edu/abs/2004Icar..170..113R
https://doi.org/10.1051/0004-6361/201117150
http://adsabs.harvard.edu/abs/2011A&A...536A..79R
https://doi.org/10.1016/j.pss.2006.06.016
http://adsabs.harvard.edu/abs/2006P&SS...54.1510R
https://doi.org/10.1126/science.212.4491.163
http://adsabs.harvard.edu/abs/1981Sci...212..163S
https://doi.org/10.1029/JA077i019p03592
http://adsabs.harvard.edu/abs/1972JGR....77.3592S
https://doi.org/10.1006/icar.1996.0023
http://adsabs.harvard.edu/abs/1996Icar..119..336S
https://doi.org/10.1016/j.icarus.2012.05.030
http://adsabs.harvard.edu/abs/2012Icar..220..744S
https://doi.org/10.1016/j.pss.2007.04.014
http://adsabs.harvard.edu/abs/2007P&SS...55.2025S
https://doi.org/10.1016/j.icarus.2015.05.003
http://adsabs.harvard.edu/abs/2016Icar..270...85S
https://doi.org/10.1002/2014JE004634
http://adsabs.harvard.edu/abs/2014JGRE..119.1729S
https://doi.org/10.1029/JB090iB14p12381
https://doi.org/10.1029/2009GL042312
http://adsabs.harvard.edu/abs/2010GeoRL..37.7104S
http://adsabs.harvard.edu/abs/2002rtao.book.....T
https://doi.org/10.1038/nature04126
http://adsabs.harvard.edu/abs/2005Natur.438..765T
https://doi.org/10.1016/j.pss.2007.11.019
http://adsabs.harvard.edu/abs/2008P&SS...56..669T
http://adsabs.harvard.edu/abs/2010tfch.book..297T
https://doi.org/10.1016/j.pss.2011.03.02
http://adsabs.harvard.edu/abs/2012P&SS...60...52V
https://doi.org/10.1016/j.icarus.2015.05.009
http://adsabs.harvard.edu/abs/2015Icar..257..313V
https://doi.org/10.1016/j.icarus.2014.11.038
http://adsabs.harvard.edu/abs/2016Icar..270..399W
https://doi.org/10.1016/S0010-4655(02)00675-6
http://adsabs.harvard.edu/abs/2003CoPhC.150...99W
https://doi.org/10.1016/j.jqsrt.2012.10.013
http://adsabs.harvard.edu/abs/2013JQSRT.117...59X
https://doi.org/10.1086/339826
http://adsabs.harvard.edu/abs/2002AJ....123.3473Y
http://adsabs.harvard.edu/abs/2002AJ....123.3473Y
https://doi.org/10.1086/161780
http://adsabs.harvard.edu/abs/1984ApJ...278..186Y

	1. Introduction
	2. Computation
	2.1. Component Data Structures and Methods
	2.1.1. Atmosphere
	2.1.2. Photon Generation
	2.1.3. Detectors

	2.2. Main Program Loop
	2.2.1. Photon Traverse
	2.2.2. Generating Random Optical Depths
	2.2.3. Determining the Scattering Location
	2.2.4. Updating the Detectors
	2.2.5. Calculating a New Direction after Scattering

	3. Validation
	3.1. Lambertian Surface and Thick Atmosphere
	3.2. Atmosphere and Surface
	3.3. One Scatter at Surface (0)
	3.4. One Scatter in the Atmosphere (1)
	3.5. Two Scatters: Atmosphere, then Surface (10)
	3.6. Two Scatters: Surface, then Atmosphere (01)
	3.7. Plane-Parallel Titan

	4. Duration
	5. Application
	References

